Compare commits
14 Commits
9a8f75de19
...
master
| Author | SHA1 | Date | |
|---|---|---|---|
| 5e36a64acb | |||
| 86f488e456 | |||
| 1256c9b807 | |||
| e7cec37ac5 | |||
| aa5945e8b2 | |||
| 73857920b4 | |||
| 580ba1f9f6 | |||
| f54daffb72 | |||
| 1a9f820724 | |||
| 9c30fc4405 | |||
| fffe096312 | |||
| ae9868b233 | |||
| 59f99cc466 | |||
| db305dbfda |
11
.project
Normal file
11
.project
Normal file
@ -0,0 +1,11 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<projectDescription>
|
||||
<name>Theta_fourier</name>
|
||||
<comment></comment>
|
||||
<projects>
|
||||
</projects>
|
||||
<buildSpec>
|
||||
</buildSpec>
|
||||
<natures>
|
||||
</natures>
|
||||
</projectDescription>
|
||||
104
C/FFT_FP_realisation.c
Normal file
104
C/FFT_FP_realisation.c
Normal file
@ -0,0 +1,104 @@
|
||||
#include "FFT_FP_realisation.h"
|
||||
|
||||
#include <math.h>
|
||||
#include <stdio.h>
|
||||
|
||||
#ifndef FFT_FP_EXTERNAL_TWIDDLES
|
||||
static int64_t twiddle_re[TWIDDLE_L] = {0,};
|
||||
static int64_t twiddle_im[TWIDDLE_L] = {0,};
|
||||
#define PRINTF
|
||||
#endif
|
||||
|
||||
|
||||
|
||||
void fft_twiddle_gen(int64_t* tw_re, int64_t* tw_im){
|
||||
for (uint32_t k = 0; k < TWIDDLE_L; ++k){
|
||||
double angle = 2.0 * PI * k / DATA_L;
|
||||
tw_re[k] = lround(cos(angle) * FP_acc);
|
||||
tw_im[k] = lround(-sin(angle) * FP_acc);
|
||||
}
|
||||
}
|
||||
|
||||
void fft_fp_prepare(void){
|
||||
fft_twiddle_gen(twiddle_re, twiddle_im);
|
||||
for (uint32_t k = 0; k < TWIDDLE_L; ++k){
|
||||
#ifdef PRINTF
|
||||
printf("k, angle, tw_re, tw_im: %u %g %lld %lld\n", k, 2.0 * PI * k / DATA_L, (long long)twiddle_re[k], (long long)twiddle_im[k]);
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
void FFT_fp(int64_t* inp, uint32_t inp_L, int64_t* buf){
|
||||
|
||||
// buf имеет длину inp_L * 2 (Re, Im, Re, Im, ...)
|
||||
// inp содержит inp_L значений uint32_t
|
||||
|
||||
uint32_t i, j, bit;
|
||||
// uint32_t N = inp_L / 2; // длина комплексного массива (inp содержит только Re-часть)
|
||||
uint32_t N = inp_L; // длина комплексного массива (inp содержит только Re-часть)
|
||||
|
||||
// --- копирование входных данных в буфер ---
|
||||
for (i = 0; i < inp_L; i++) {
|
||||
buf[i * 2] = inp[i];
|
||||
buf[i * 2 + 1] = 0;
|
||||
}
|
||||
|
||||
// --- bit-reversal перестановка ---
|
||||
j = 0;
|
||||
for (i = 1; i < N; i++) {
|
||||
bit = N >> 1;
|
||||
while (j & bit) {
|
||||
j ^= bit;
|
||||
bit >>= 1;
|
||||
}
|
||||
j |= bit;
|
||||
if (i < j) {
|
||||
int64_t tmp_re = buf[i * 2];
|
||||
int64_t tmp_im = buf[i * 2 + 1];
|
||||
buf[i * 2] = buf[j * 2];
|
||||
buf[i * 2 + 1] = buf[j * 2 + 1];
|
||||
buf[j * 2] = tmp_re;
|
||||
buf[j * 2 + 1] = tmp_im;
|
||||
}
|
||||
}
|
||||
|
||||
// --- уровни бабочек ---
|
||||
uint32_t m = 2;
|
||||
while (m <= N) {
|
||||
uint32_t half = m >> 1;
|
||||
uint32_t stride = N / m;
|
||||
|
||||
for (uint32_t start = 0; start < N; start += m) {
|
||||
for (uint32_t k = 0; k < half; k++) {
|
||||
uint32_t tw_idx = k * stride;
|
||||
int64_t wr = twiddle_re[tw_idx];
|
||||
int64_t wi = twiddle_im[tw_idx];
|
||||
int64_t u_re = buf[(start + k) * 2];
|
||||
int64_t u_im = buf[(start + k) * 2 + 1];
|
||||
int64_t v_re = buf[(start + k + half) * 2];
|
||||
int64_t v_im = buf[(start + k + half) * 2 + 1];
|
||||
|
||||
// t = w * v (в фиксированной точке)
|
||||
int64_t t_re = (wr * v_re - wi * v_im) / FP_acc;
|
||||
int64_t t_im = (wr * v_im + wi * v_re) / FP_acc;
|
||||
|
||||
// верх/низ
|
||||
buf[(start + k) * 2] = u_re + t_re;
|
||||
buf[(start + k) * 2 + 1] = u_im + t_im;
|
||||
buf[(start + k + half) * 2] = u_re - t_re;
|
||||
buf[(start + k + half) * 2 + 1] = u_im - t_im;
|
||||
|
||||
}
|
||||
}
|
||||
m <<= 1;
|
||||
}
|
||||
for (uint32_t ii = 0; ii < inp_L; ++ii){
|
||||
buf[ii*2] /= inp_L;
|
||||
buf[ii*2+1] /= inp_L;
|
||||
#ifdef PRINTF
|
||||
printf("re,im: %lld, %lld\n", (long long)buf[ii*2], (long long)buf[ii*2 +1]);
|
||||
#endif
|
||||
|
||||
}
|
||||
|
||||
}
|
||||
31
C/FFT_FP_realisation.h
Normal file
31
C/FFT_FP_realisation.h
Normal file
@ -0,0 +1,31 @@
|
||||
#ifndef FFT_FP_REALISATION_H
|
||||
#define FFT_FP_REALISATION_H
|
||||
|
||||
#include <stdint.h>
|
||||
|
||||
#ifndef DATA_L
|
||||
#define DATA_L (1 << 16)
|
||||
#endif
|
||||
|
||||
#ifndef FP_acc
|
||||
#define FP_acc 1000
|
||||
#endif
|
||||
|
||||
#ifndef TWIDDLE_L
|
||||
#define TWIDDLE_L (DATA_L / 2)
|
||||
#endif
|
||||
|
||||
#ifndef PI
|
||||
#define PI 3.141592653589793238462643383279502884197169399375105820974944
|
||||
#endif
|
||||
|
||||
#ifdef FFT_FP_EXTERNAL_TWIDDLES
|
||||
extern volatile int64_t twiddle_re[TWIDDLE_L];
|
||||
extern volatile int64_t twiddle_im[TWIDDLE_L];
|
||||
#endif
|
||||
|
||||
void fft_twiddle_gen(int64_t* twiddle_re, int64_t* twiddle_im);
|
||||
void fft_fp_prepare(void);
|
||||
void FFT_fp(int64_t* inp, uint32_t inp_L, int64_t* buf);
|
||||
|
||||
#endif
|
||||
BIN
C/FFT_FP_realisation.o
Normal file
BIN
C/FFT_FP_realisation.o
Normal file
Binary file not shown.
0
C/FFT_realistaion.c
Normal file
0
C/FFT_realistaion.c
Normal file
24
C/FFT_realistaion.h
Normal file
24
C/FFT_realistaion.h
Normal file
@ -0,0 +1,24 @@
|
||||
#include <string.h>
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <stdint.h>
|
||||
#include <math.h>
|
||||
|
||||
#define DATA_L (1<<17)
|
||||
#define FP_acc (1 << 10)
|
||||
#define TWIDDLE_L (DATA_L / 2)
|
||||
|
||||
#define PI 3.141592653589793238462643383279502884197169399375105820974944
|
||||
|
||||
int64_t twiddle_re[TWIDDLE_L] = {0,};
|
||||
int64_t twiddle_im[TWIDDLE_L] = {0,};
|
||||
|
||||
void FFT_fp(int64_t* inp, uint32_t inp_L, int64_t* buf){
|
||||
|
||||
}
|
||||
|
||||
void twiddle_fill(int64_t* tw_re, int64_t* tw_im, uint32_t N){
|
||||
|
||||
}
|
||||
|
||||
|
||||
1
C/FFT_test.c
Normal file
1
C/FFT_test.c
Normal file
@ -0,0 +1 @@
|
||||
|
||||
62
C/FP_math.c
Normal file
62
C/FP_math.c
Normal file
@ -0,0 +1,62 @@
|
||||
#include <string.h>
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <stdint.h>
|
||||
#include <math.h>
|
||||
|
||||
#define DATA_L (1<<16)
|
||||
#define FP_acc (1<<16)
|
||||
|
||||
#include "FFT_FP_realisation.h"
|
||||
|
||||
|
||||
void imagery2abs(int64_t* inp, uint32_t inp_L, int64_t *out_abs, int64_t *out_phase){
|
||||
printf("+++++++++++++++++++++\n");
|
||||
printf("calculating abs^2\n");
|
||||
for (uint32_t i = 0; i < inp_L; ++i){
|
||||
int64_t re = inp[i*2];
|
||||
int64_t im = inp[i*2 +1];
|
||||
int64_t val = (re * re + im * im) / FP_acc;
|
||||
int64_t phase = 0;
|
||||
printf("%lld, %ldd\n", (long long)val, (long long) phase);
|
||||
out_abs[i] = val;
|
||||
out_phase[i] = phase;
|
||||
|
||||
}
|
||||
}
|
||||
void data_generator(int64_t* X, int64_t* Y, uint32_t N){
|
||||
for (int i = 0; i < N; ++i){
|
||||
X[i] = (int64_t)i;
|
||||
Y[i] = lround(sin(((double)i)*2.0* PI/(N/10))*FP_acc);
|
||||
Y[i] += lround(cos(((double)i)*2.0* PI/(N/20))*FP_acc);
|
||||
Y[i] += 1*FP_acc;
|
||||
}
|
||||
}
|
||||
|
||||
void main(){
|
||||
char* logfilename = "tmp";
|
||||
int64_t data_X[DATA_L] = {0,};
|
||||
int64_t data_Y[DATA_L] = {0,};
|
||||
int64_t data_res_FFT_imag[DATA_L*2] = {0,};
|
||||
int64_t data_res_FFT_abs[DATA_L] = {0,};
|
||||
int64_t data_res_FFT_phase[DATA_L] = {0,};
|
||||
|
||||
|
||||
fft_fp_prepare();
|
||||
|
||||
data_generator(data_X, data_Y, DATA_L);
|
||||
|
||||
|
||||
FFT_fp(data_Y, DATA_L, data_res_FFT_imag);
|
||||
|
||||
|
||||
imagery2abs(data_res_FFT_imag, DATA_L, data_res_FFT_abs, data_res_FFT_phase);
|
||||
|
||||
FILE *logfile_ptr;
|
||||
logfile_ptr = fopen(logfilename, "w");
|
||||
fprintf(logfile_ptr, "X, Y, FFT_val, FFT_phase, FFT_Re, FFT_Im\n");
|
||||
for (uint32_t i = 0; i < DATA_L; ++i){
|
||||
fprintf(logfile_ptr, "%lld, %lg, %lg, %lg, %lg, %lg\n", (long long)data_X[i], ((double)data_Y[i])/(double)FP_acc , (double)data_res_FFT_abs[i]/(double)FP_acc, (double)data_res_FFT_phase[i]/(double)FP_acc, (double)data_res_FFT_imag[2*i]/(double)FP_acc, (double)data_res_FFT_imag[2*i +1]/(double)FP_acc );
|
||||
}
|
||||
fclose(logfile_ptr);
|
||||
}
|
||||
152
C/FP_math.c_backup
Normal file
152
C/FP_math.c_backup
Normal file
@ -0,0 +1,152 @@
|
||||
#include <string.h>
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <stdint.h>
|
||||
#include <math.h>
|
||||
|
||||
#define DATA_L 1024
|
||||
#define FP_acc 1000
|
||||
|
||||
#define PI 3.141592653589793238462643383279502884197169399375105820974944
|
||||
|
||||
|
||||
|
||||
int cos_delta_FP_arr[DATA_L] = {0,};
|
||||
int sin_delta_FP_arr[DATA_L] = {0,};
|
||||
|
||||
void FFT_fp(uint32_t* inp, uint32_t inp_L, uint32_t* buf){
|
||||
|
||||
// buf имеет длину inp_L * 2 (Re, Im, Re, Im, ...)
|
||||
// inp содержит inp_L значений uint32_t
|
||||
|
||||
uint32_t i, j, bit;
|
||||
// uint32_t N = inp_L / 2; // длина комплексного массива (inp содержит только Re-часть)
|
||||
uint32_t N = inp_L; // длина комплексного массива (inp содержит только Re-часть)
|
||||
|
||||
// --- копирование входных данных в буфер ---
|
||||
for (i = 0; i < inp_L; i++) {
|
||||
buf[i * 2] = (int)inp[i]; // Re
|
||||
buf[i * 2 + 1] = 0; // Im = 0
|
||||
}
|
||||
|
||||
// --- bit-reversal перестановка ---
|
||||
j = 0;
|
||||
for (i = 1; i < N; i++) {
|
||||
bit = N >> 1;
|
||||
while (j & bit) {
|
||||
j ^= bit;
|
||||
bit >>= 1;
|
||||
}
|
||||
j |= bit;
|
||||
if (i < j) {
|
||||
int tmp_re = buf[i * 2];
|
||||
int tmp_im = buf[i * 2 + 1];
|
||||
buf[i * 2] = buf[j * 2];
|
||||
buf[i * 2 + 1] = buf[j * 2 + 1];
|
||||
buf[j * 2] = tmp_re;
|
||||
buf[j * 2 + 1] = tmp_im;
|
||||
}
|
||||
}
|
||||
|
||||
// --- уровни бабочек ---
|
||||
uint32_t m = 2;
|
||||
while (m <= N) {
|
||||
uint32_t half = m >> 1;
|
||||
|
||||
int c_delta_FP = cos_delta_FP_arr[m - 2];
|
||||
int s_delta_FP = sin_delta_FP_arr[m - 2];
|
||||
|
||||
for (uint32_t start = 0; start < N; start += m) {
|
||||
int wr = FP_acc;
|
||||
int wi = 0;
|
||||
|
||||
for (uint32_t k = 0; k < half; k++) {
|
||||
int u_re = buf[(start + k) * 2];
|
||||
int u_im = buf[(start + k) * 2 + 1];
|
||||
int v_re = buf[(start + k + half) * 2];
|
||||
int v_im = buf[(start + k + half) * 2 + 1];
|
||||
|
||||
// t = w * v (в фиксированной точке)
|
||||
int64_t t_re = ((int64_t)wr * v_re - (int64_t)wi * v_im) / FP_acc;
|
||||
int64_t t_im = ((int64_t)wr * v_im + (int64_t)wi * v_re) / FP_acc;
|
||||
|
||||
// верх/низ
|
||||
buf[(start + k) * 2] = u_re + (int)t_re;
|
||||
buf[(start + k) * 2 + 1] = u_im + (int)t_im;
|
||||
buf[(start + k + half) * 2] = u_re - (int)t_re;
|
||||
buf[(start + k + half) * 2 + 1] = u_im - (int)t_im;
|
||||
|
||||
// w *= w_m (обновление twiddle)
|
||||
int64_t wr_new = ((int64_t)wr * c_delta_FP - (int64_t)wi * s_delta_FP) / FP_acc;
|
||||
int64_t wi_new = ((int64_t)wr * s_delta_FP + (int64_t)wi * c_delta_FP) / FP_acc;
|
||||
wr = (int)wr_new;
|
||||
wi = (int)wi_new;
|
||||
}
|
||||
}
|
||||
m <<= 1;
|
||||
}
|
||||
for (uint32_t i = 0; i < inp_L; ++i){
|
||||
//buf[i*2] /= inp_L;
|
||||
//buf[i*2+1] /= inp_L;
|
||||
printf("re,im: %d, %d\n", buf[i*2], buf[i*2 +1]);
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
void imagery2abs(uint32_t* inp, uint32_t inp_L, uint32_t *out){
|
||||
printf("+++++++++++++++++++++\n");
|
||||
printf("calculating abs^2\n");
|
||||
for (uint32_t i = 0; i < inp_L; ++i){
|
||||
int val = (inp[i*2]*inp[i*2] + inp[i*2 +1]*inp[i*2 +1])/FP_acc;
|
||||
printf("%d\n", val);
|
||||
out[i] = val;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
void sin_cos_filler(int* sin_arr, int* cos_arr, uint32_t L){
|
||||
//[int(-sin(2.0 * pi / m) * FP_acc) for m in range(2,inp_L//2 + 2)]
|
||||
for (uint32_t i = 0; i < L; ++i){
|
||||
int m = i + 2;
|
||||
double angle = 2.0* PI/m;
|
||||
sin_arr[i] = lround(-sin(angle) * FP_acc);
|
||||
cos_arr[i] = lround(cos(angle) * FP_acc);
|
||||
printf("i, angle, sin, cos: %d %g %d %d\n", i, angle, sin_arr[i], cos_arr[i]);
|
||||
}
|
||||
}
|
||||
|
||||
void data_generator(uint32_t* X, uint32_t* Y, uint32_t N){
|
||||
for (int i = 0; i < N; ++i){
|
||||
X[i] = (int) i;
|
||||
Y[i] = lround(sin(((double)i)*2.0* PI/(N/10))*FP_acc);
|
||||
// Y[I] += 10*FP_acc;
|
||||
}
|
||||
}
|
||||
|
||||
void main(){
|
||||
char* logfilename = "tmp";
|
||||
uint32_t data_X[DATA_L] = {0,};
|
||||
uint32_t data_Y[DATA_L] = {0,};
|
||||
uint32_t data_res_FFT_imag[DATA_L*2] = {0,};
|
||||
uint32_t data_res_FFT_abs[DATA_L] = {0,};
|
||||
|
||||
sin_cos_filler(sin_delta_FP_arr, cos_delta_FP_arr, DATA_L);
|
||||
|
||||
data_generator(data_X, data_Y, DATA_L);
|
||||
|
||||
|
||||
FFT_fp(data_Y, DATA_L, data_res_FFT_imag);
|
||||
|
||||
|
||||
imagery2abs(data_res_FFT_imag, DATA_L, data_res_FFT_abs);
|
||||
|
||||
FILE *logfile_ptr;
|
||||
logfile_ptr = fopen(logfilename, "w");
|
||||
fprintf(logfile_ptr, "X, Y, FFT\n");
|
||||
for (uint32_t i = 0; i < DATA_L; ++i){
|
||||
fprintf(logfile_ptr, "%d, %d, %d \n", data_X[i], data_Y[i],data_res_FFT_abs[i]);
|
||||
}
|
||||
fclose(logfile_ptr);
|
||||
}
|
||||
|
||||
BIN
C/FP_math.o
Normal file
BIN
C/FP_math.o
Normal file
Binary file not shown.
14
C/Makefile
Normal file
14
C/Makefile
Normal file
@ -0,0 +1,14 @@
|
||||
SRCS := FP_math.c FFT_FP_realisation.c
|
||||
OBJS := $(SRCS:.c=.o)
|
||||
TARGET := FP_math
|
||||
|
||||
all: $(TARGET)
|
||||
|
||||
$(TARGET): $(OBJS)
|
||||
gcc $(OBJS) -o $@ -lm
|
||||
|
||||
%.o: %.c
|
||||
gcc -c $< -o $@
|
||||
|
||||
clean:
|
||||
-rm -f $(TARGET) $(OBJS)
|
||||
57
C/plotter.py
Executable file
57
C/plotter.py
Executable file
@ -0,0 +1,57 @@
|
||||
#!/usr/bin/pypy3
|
||||
import plotly.graph_objs as go
|
||||
from decimal import *
|
||||
from sys import argv
|
||||
import csv
|
||||
|
||||
|
||||
def main():
|
||||
chart = go.Figure()
|
||||
chart.add_trace(go.Scatter(x=[1,2,3], y=[1,2,3]))
|
||||
chart.show()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
if len(argv) == 1:
|
||||
main()
|
||||
else:
|
||||
f = open(argv[1], "rt")
|
||||
#csv_reader = csv.reader(f)
|
||||
data = {}
|
||||
# for line in csv_reader:
|
||||
headers = f.readline()
|
||||
headers = headers.split(",")
|
||||
headers[-1] = headers[-1][:-1]
|
||||
for i in range(len(headers)):
|
||||
headers[i] = headers[i].strip()
|
||||
for header in headers:
|
||||
data[header] = []
|
||||
for line in f:
|
||||
try:
|
||||
line_data = line.split(",")
|
||||
#line_data = line
|
||||
#print(line_data)
|
||||
for i in range(len(line_data)):
|
||||
val = float(line_data[i])
|
||||
if (i < len(headers)):
|
||||
header = headers[i]
|
||||
data[header].append(val)
|
||||
else:
|
||||
print("too much values!")
|
||||
print("headers:", headers)
|
||||
print("values:", line_data)
|
||||
except ValueError:
|
||||
pass
|
||||
f.close()
|
||||
# print(data)
|
||||
chart = go.Figure()
|
||||
keys = [k for k in data.keys()]
|
||||
# print("data.keys:", keys)
|
||||
X_name = keys[0]
|
||||
print("data samples:",len(data[X_name]))
|
||||
for key, val in data.items():
|
||||
if key != X_name:
|
||||
# chart.add_trace(go.Scatter(x=data[X_name], y=val, name=key, mode="markers+lines"))
|
||||
chart.add_trace(go.Scatter(x=data[X_name], y=val, name=key, mode="lines"))
|
||||
chart.show()
|
||||
|
||||
32
FFT.py
32
FFT.py
@ -1,32 +0,0 @@
|
||||
import numpy as np
|
||||
|
||||
|
||||
|
||||
|
||||
def FFT_backup(inp):
|
||||
inp = np.array(inp)
|
||||
out = np.fft.fft(inp)
|
||||
out = [val for val in np.abs(out)]
|
||||
print(out)
|
||||
return out
|
||||
|
||||
|
||||
def FFT_real(inp):
|
||||
inp = np.array(inp)
|
||||
out = FFT(inp)
|
||||
out = [val for val in np.abs(out)]
|
||||
print(out)
|
||||
return out
|
||||
|
||||
|
||||
def FFT(inp):
|
||||
inp = np.array(inp)
|
||||
N = inp.shape[0]
|
||||
if N == 1:
|
||||
return inp
|
||||
X_even = FFT(inp[::2])
|
||||
X_odd = FFT(inp[1::2])
|
||||
k = np.arange(N // 2)
|
||||
tw = np.exp(-2j * np.pi * k / N) * X_odd
|
||||
return np.concatenate((X_even + tw, X_even - tw))
|
||||
|
||||
Binary file not shown.
BIN
__pycache__/FP_trigonometry.cpython-312.pyc
Normal file
BIN
__pycache__/FP_trigonometry.cpython-312.pyc
Normal file
Binary file not shown.
326
python/FFT.py
Normal file
326
python/FFT.py
Normal file
@ -0,0 +1,326 @@
|
||||
import numpy as np
|
||||
from math import sin, cos, pi, sqrt
|
||||
|
||||
|
||||
|
||||
def FFT_backup(inp):
|
||||
inp = np.array(inp)
|
||||
out = np.fft.fft(inp)
|
||||
out = [val for val in np.abs(out)]
|
||||
print(out)
|
||||
return out
|
||||
|
||||
|
||||
def FFT_real(inp):
|
||||
|
||||
mode = 3
|
||||
if (mode == 0):
|
||||
inp = np.array(inp)
|
||||
out = FFT_np(inp)
|
||||
out = [np.abs(val) for val in out]
|
||||
if (mode == 1): # simple with recursion
|
||||
|
||||
out = FFT_arr([[val, 0] for val in inp])
|
||||
#out = [val for val in np.abs(out)]
|
||||
print("FFT_calculated!")
|
||||
print("output:", out)
|
||||
out = [sqrt(val[0]**2 + val[1]**2) for val in out]
|
||||
# out = [2 for val in out]
|
||||
if (mode == 2): #no internal buffs
|
||||
|
||||
tmp = []
|
||||
for re in inp:
|
||||
tmp.append(re)
|
||||
tmp.append(0)
|
||||
|
||||
out = FFT_arr_inplace(tmp)
|
||||
|
||||
tmp = out.copy()
|
||||
out = []
|
||||
for i in range(len(tmp)//2):
|
||||
out.append([tmp[2*i], tmp[2*i+1]])
|
||||
|
||||
|
||||
#out = [val for val in np.abs(out)]
|
||||
print("FFT_calculated!")
|
||||
#print("output:", out)
|
||||
out = [sqrt(val[0]**2 + val[1]**2) for val in out]
|
||||
|
||||
if (mode == 3): #fixed-point
|
||||
|
||||
tmp = []
|
||||
for re in inp:
|
||||
tmp.append(re)
|
||||
tmp.append(0)
|
||||
|
||||
out = FFT_arr_FP(tmp)
|
||||
|
||||
tmp = out.copy()
|
||||
out = []
|
||||
for i in range(len(tmp)//2):
|
||||
out.append([tmp[2*i], tmp[2*i+1]])
|
||||
|
||||
|
||||
#out = [val for val in np.abs(out)]
|
||||
print("FFT_calculated!")
|
||||
#print("output:", out)
|
||||
out = [sqrt(val[0]**2 + val[1]**2) for val in out]
|
||||
|
||||
|
||||
|
||||
#print(out)
|
||||
return out
|
||||
|
||||
|
||||
def FFT(inp):
|
||||
return FFT_arr([[val, 0] for val in inp])
|
||||
|
||||
def FFT_np(inp):
|
||||
print("inp:", inp)
|
||||
inp = np.array(inp)
|
||||
N = inp.shape[0]
|
||||
if N == 1:
|
||||
return inp
|
||||
X_even = FFT_np(inp[::2])
|
||||
X_odd = FFT_np(inp[1::2])
|
||||
k = np.arange(N // 2)
|
||||
tw = np.exp(-2j * np.pi * k / N) * X_odd
|
||||
return np.concatenate((X_even + tw, X_even - tw))
|
||||
|
||||
def FFT_arr(x):
|
||||
print("x:", x)
|
||||
|
||||
N = len(x)
|
||||
print("len(x):", N)
|
||||
if N == 1:
|
||||
print("As len(x) == 1, return it`s value")
|
||||
return x
|
||||
X_even = FFT_arr(x[::2])
|
||||
X_odd = FFT_arr(x[1::2])
|
||||
print("X_even:",X_even)
|
||||
|
||||
tw = []
|
||||
for k in range(len(X_odd)):
|
||||
a = cos(2*pi * k/N) #real
|
||||
b = -sin(2*pi * k/N) #imag
|
||||
|
||||
c = X_odd[k][0] # real
|
||||
d = X_odd[k][1] # imag
|
||||
|
||||
print("a,b,c,d:", a,b,c,d)
|
||||
|
||||
tw.append([a*c - b*d, b*c + a*d]) #(a + ib)(c + id) = (ac - bd) + i(bc + ad)
|
||||
res = [0 for i in range(len(X_even)*2)]
|
||||
for i in range(len(X_even)):
|
||||
res[i] = [X_even[i][0] + tw[i][0], X_even[i][1] + tw[i][1]]
|
||||
res[i+len(X_even)] = [X_even[i][0] - tw[i][0], X_even[i][1] - tw[i][1]]
|
||||
return res
|
||||
|
||||
|
||||
|
||||
|
||||
def FFT_arr_inplace(buf):
|
||||
"""
|
||||
In-place radix-2 DIT FFT для списка buf длины N=2^m, где каждый элемент — [re, im].
|
||||
Без массивов twiddle: твиддл на уровне обновляется рекуррентно.
|
||||
"""
|
||||
|
||||
N = len(buf)//2
|
||||
# --- bit-reverse перестановка (чтобы бабочки шли последовательно) ---
|
||||
j = 0
|
||||
for i in range(1, N):
|
||||
bit = N >> 1
|
||||
while j & bit:
|
||||
j ^= bit
|
||||
bit >>= 1
|
||||
j |= bit
|
||||
if i < j:
|
||||
buf[i*2], buf[i*2+1], buf[j*2], buf[j*2+1] = buf[j*2], buf[j*2+1], buf[i*2], buf[i*2+1]
|
||||
|
||||
# --- уровни бабочек ---
|
||||
m = 2
|
||||
while m <= N:
|
||||
half = m // 2
|
||||
# шаг угла Δ = 2π/m, базовый твиддл w_m = e^{-jΔ} => (cw, sw)
|
||||
c_delta = cos(2.0 * math.pi / m)
|
||||
s_delta = -sin(2.0 * math.pi / m)
|
||||
|
||||
for start in range(0, N, m):
|
||||
# w = e^{-j*0*Δ} = 1 + j0
|
||||
wr, wi = 1.0, 0.0
|
||||
for k in range(half):
|
||||
u_re, u_im = buf[(start + k)*2], buf[(start + k)*2 +1]
|
||||
v_re, v_im = buf[(start + k + half)*2], buf[(start + k + half)*2 +1]
|
||||
|
||||
# t = w * v
|
||||
print("wr, v_re, wi, v_im:",wr, v_re, wi, v_im)
|
||||
t_re = wr * v_re - wi * v_im
|
||||
t_im = wr * v_im + wi * v_re
|
||||
|
||||
# верх/низ
|
||||
buf[(start + k)*2 +0] = u_re + t_re
|
||||
buf[(start + k)*2 +1] = u_im + t_im
|
||||
buf[(start + k + half)*2 + 0] = u_re - t_re
|
||||
buf[(start + k + half)*2 + 1] = u_im - t_im
|
||||
|
||||
# w *= w_m (поворот на Δ с помощью рекуррентной формулы)
|
||||
# (wr + j wi) * (cΔ + j sΔ)
|
||||
wr, wi = wr * c_delta - wi * s_delta, wr * s_delta + wi * c_delta
|
||||
|
||||
m <<= 1
|
||||
return buf
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
FP_acc = 2<<16
|
||||
|
||||
def FFT_arr_FP(buf):
|
||||
"""
|
||||
In-place radix-2 DIT FFT для списка buf длины N=2^m, где каждый элемент — [re, im].
|
||||
Без массивов twiddle: твиддл на уровне обновляется рекуррентно.
|
||||
"""
|
||||
|
||||
buf = [int(val*FP_acc) for val in buf]
|
||||
|
||||
N = len(buf)//2
|
||||
# --- bit-reverse перестановка (чтобы бабочки шли последовательно) ---
|
||||
j = 0
|
||||
for i in range(1, N):
|
||||
bit = N >> 1
|
||||
while j & bit:
|
||||
j ^= bit
|
||||
bit >>= 1
|
||||
j |= bit
|
||||
if i < j:
|
||||
buf[i*2], buf[i*2+1], buf[j*2], buf[j*2+1] = buf[j*2], buf[j*2+1], buf[i*2], buf[i*2+1]
|
||||
|
||||
# --- уровни бабочек ---
|
||||
|
||||
c_delta_FP_arr = [cos(2.0 * pi / m) * FP_acc for m in range(2,N+2)]
|
||||
s_delta_FP_arr = [-sin(2.0 * pi / m) * FP_acc for m in range(2,N+2)]
|
||||
m = 2
|
||||
while m <= N:
|
||||
half = m // 2
|
||||
# шаг угла Δ = 2π/m, базовый твиддл w_m = e^{-jΔ} => (cw, sw)
|
||||
print("N, m:", N,m)
|
||||
|
||||
c_delta_FP = c_delta_FP_arr[m -2]
|
||||
s_delta_FP = s_delta_FP_arr[m -2]
|
||||
#c_delta_FP = cos(2.0 * pi / m) * FP_acc
|
||||
#s_delta_FP = -sin(2.0 * pi / m) * FP_acc
|
||||
|
||||
for start in range(0, N, m):
|
||||
# w = e^{-j*0*Δ} = 1 + j0
|
||||
wr, wi = 1.0 * FP_acc, 0.0 * FP_acc
|
||||
for k in range(half):
|
||||
u_re, u_im = buf[(start + k)*2], buf[(start + k)*2 +1]
|
||||
v_re, v_im = buf[(start + k + half)*2], buf[(start + k + half)*2 +1]
|
||||
|
||||
# t = w * v
|
||||
print("wr, v_re, wi, v_im:", wr, v_re, wi, v_im)
|
||||
t_re = (wr * v_re - wi * v_im) / FP_acc
|
||||
t_im = (wr * v_im + wi * v_re) / FP_acc
|
||||
|
||||
# верх/низ
|
||||
buf[(start + k)*2 +0] = u_re + t_re
|
||||
buf[(start + k)*2 +1] = u_im + t_im
|
||||
buf[(start + k + half)*2 + 0] = u_re - t_re
|
||||
buf[(start + k + half)*2 + 1] = u_im - t_im
|
||||
|
||||
|
||||
# w *= w_m (поворот на Δ с помощью рекуррентной формулы)
|
||||
# (wr + j wi) * (cΔ + j sΔ)
|
||||
wr, wi = (wr * c_delta_FP - wi * s_delta_FP)/ FP_acc, (wr * s_delta_FP + wi * c_delta_FP)/ FP_acc
|
||||
|
||||
|
||||
m <<= 1
|
||||
|
||||
buf = [val/ FP_acc for val in buf]
|
||||
return buf
|
||||
|
||||
#global arrays. calculated once at compile time. They store sin and cos values as fixed-point
|
||||
c_delta_FP_arr = [int(cos(2.0 * pi / m) * FP_acc) for m in range(2,inp_L//2 + 2)]
|
||||
s_delta_FP_arr = [int(-sin(2.0 * pi / m) * FP_acc) for m in range(2, inp_L//2 + 2)]
|
||||
|
||||
def FFT_arr_FP_for_C(inp, inp_L, buf): #version for translation to C directly
|
||||
"""
|
||||
In-place radix-2 DIT FFT для списка buf длины N=2^m, где каждый элемент — [re, im].
|
||||
Без массивов twiddle: твиддл на уровне обновляется рекуррентно.
|
||||
"""
|
||||
|
||||
#buf = [int(val*FP_acc) for val in buf]
|
||||
for i in range(inp_L):
|
||||
buf[i*2] = inp[i] #take data from input as real and store it to the buf as Re, Im pairs.
|
||||
buf[i*2 + 1] = 0
|
||||
|
||||
N = inp_L//2
|
||||
# --- bit-reverse перестановка (чтобы бабочки шли последовательно) ---
|
||||
j = 0
|
||||
for i in range(1, N):
|
||||
bit = N >> 1
|
||||
while j & bit:
|
||||
j ^= bit
|
||||
bit >>= 1
|
||||
j |= bit
|
||||
if i < j:
|
||||
buf[i*2], buf[i*2+1], buf[j*2], buf[j*2+1] = buf[j*2], buf[j*2+1], buf[i*2], buf[i*2+1]
|
||||
|
||||
# --- уровни бабочек ---
|
||||
|
||||
c_delta_FP_arr = [cos(2.0 * pi / m) * FP_acc for m in range(2,N+2)]
|
||||
s_delta_FP_arr = [-sin(2.0 * pi / m) * FP_acc for m in range(2,N+2)]
|
||||
m = 2
|
||||
while m <= N:
|
||||
half = m // 2
|
||||
# шаг угла Δ = 2π/m, базовый твиддл w_m = e^{-jΔ} => (cw, sw)
|
||||
#print("N, m:", N,m)
|
||||
|
||||
c_delta_FP = c_delta_FP_arr[m -2]
|
||||
s_delta_FP = s_delta_FP_arr[m -2]
|
||||
#c_delta_FP = cos(2.0 * pi / m) * FP_acc
|
||||
#s_delta_FP = -sin(2.0 * pi / m) * FP_acc
|
||||
|
||||
for start in range(0, N, m):
|
||||
# w = e^{-j*0*Δ} = 1 + j0
|
||||
wr, wi = 1.0 * FP_acc, 0.0 * FP_acc
|
||||
for k in range(half):
|
||||
u_re, u_im = buf[(start + k)*2], buf[(start + k)*2 +1]
|
||||
v_re, v_im = buf[(start + k + half)*2], buf[(start + k + half)*2 +1]
|
||||
|
||||
# t = w * v
|
||||
#print("wr, v_re, wi, v_im:", wr, v_re, wi, v_im)
|
||||
t_re = (wr * v_re - wi * v_im) / FP_acc
|
||||
t_im = (wr * v_im + wi * v_re) / FP_acc
|
||||
|
||||
# верх/низ
|
||||
buf[(start + k)*2 +0] = u_re + t_re
|
||||
buf[(start + k)*2 +1] = u_im + t_im
|
||||
buf[(start + k + half)*2 + 0] = u_re - t_re
|
||||
buf[(start + k + half)*2 + 1] = u_im - t_im
|
||||
|
||||
|
||||
# w *= w_m (поворот на Δ с помощью рекуррентной формулы)
|
||||
# (wr + j wi) * (cΔ + j sΔ)
|
||||
wr, wi = (wr * c_delta_FP - wi * s_delta_FP)/ FP_acc, (wr * s_delta_FP + wi * c_delta_FP)/ FP_acc
|
||||
|
||||
|
||||
m <<= 1
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
@ -3,22 +3,10 @@ from math import sin, cos, pi, sqrt
|
||||
import plotly.graph_objs as go
|
||||
from plotly.subplots import make_subplots
|
||||
|
||||
from FFT import FFT_real
|
||||
|
||||
FP_acc = 1e3
|
||||
|
||||
INP_L = 1024
|
||||
|
||||
|
||||
F_nyquist = INP_L//2
|
||||
|
||||
|
||||
FP_acc = 2<<16
|
||||
pi_FP = 1* FP_acc
|
||||
|
||||
|
||||
def abs_f(re, im):
|
||||
return sqrt(re*re + im*im)
|
||||
|
||||
|
||||
def abs_FP(re, im):
|
||||
return int(sqrt(re*re + im*im))
|
||||
@ -27,18 +15,6 @@ def sqrt_FP(val):
|
||||
#print(val)
|
||||
return int(sqrt(val))
|
||||
|
||||
def DFT_naive(inp, out):
|
||||
for f in range(len(out)):
|
||||
val_re = 0
|
||||
val_im = 0
|
||||
for n in range(len(inp)):
|
||||
phi = 2*pi*f*n/INP_L
|
||||
val_re += inp[n] * sin(phi) /INP_L
|
||||
val_im += inp[n] * cos(phi) /INP_L
|
||||
|
||||
val_abs = abs_f(val_re, val_im)
|
||||
print("F, val_abs:",f, val_abs)
|
||||
out[f] = val_abs
|
||||
|
||||
|
||||
def abs_FP(re, im):
|
||||
@ -110,7 +86,7 @@ def sin_FP_constrained(phi_fp):
|
||||
print("phi_fp:", phi_fp," >",phi_trh,"... recusion")
|
||||
print("phi_fp/2:", phi_fp/2)
|
||||
sin_phi_05 = sin_FP_constrained(phi_fp/2)
|
||||
sin_phi = (2*sin_phi_05 * sqrt_FP(FP_acc**2 - sin_phi_05*sin_phi_05))/FP_acc
|
||||
sin_phi = int((2*sin_phi_05 * sqrt_FP(FP_acc**2 - sin_phi_05*sin_phi_05))/FP_acc)
|
||||
if (sin_05_debug):
|
||||
print("sin_phi_05:", sin_phi_05)
|
||||
print("sin_phi:",sin_phi)
|
||||
@ -134,78 +110,6 @@ def cos_FP(phi_fp):
|
||||
return sin_FP(phi_fp - pi_FP/2)
|
||||
|
||||
|
||||
def DFT_naive_FP(inp_float, out):
|
||||
inp = [val*FP_acc for val in inp_float]
|
||||
for f in range(len(out)):
|
||||
val_re = 0
|
||||
val_im = 0
|
||||
for n in range(len(inp)):
|
||||
phi = 2*pi_FP*f*n/INP_L
|
||||
phi_sin = sin_FP(phi)
|
||||
phi_cos = cos_FP(phi)
|
||||
#print(phi, phi_sin, phi_cos)
|
||||
val_re += inp[n] * phi_sin /INP_L
|
||||
val_im += inp[n] * phi_cos /INP_L
|
||||
|
||||
val_abs = abs_FP(val_re, val_im)
|
||||
print("F, val_abs:",f, val_abs)
|
||||
out[f] = val_abs
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
def FFT_naive(inp, out):
|
||||
fft_out = FFT_real(inp)
|
||||
for i in range(len(fft_out)):
|
||||
val = fft_out[i]/len(inp)
|
||||
if (i < len(out)):
|
||||
out[i] = val
|
||||
else:
|
||||
pass
|
||||
#out.append(val)
|
||||
|
||||
def FFT_tester():
|
||||
inp = [-1 + 0.01*i + sin(2*pi*i/10) + cos(2*pi*i/20) + sin(2*pi*i/250) + sin(2*pi*i/2.001) for i in range(INP_L)]
|
||||
# inp = [sin(2*pi*i/2.001)for i in range(INP_L)]
|
||||
out_DFT = [0 for i in range(F_nyquist + 1)]
|
||||
out_FFT = [0 for val in range(F_nyquist + 1)]
|
||||
DFT_naive(inp, out_DFT)
|
||||
FFT_naive(inp, out_FFT)
|
||||
Fourier_error = []
|
||||
for a,b in zip(out_FFT, out_DFT):
|
||||
Fourier_error.append(a - b)
|
||||
chart = make_subplots(rows=3, cols=1)
|
||||
chart.add_trace(go.Scatter(x=[i for i in range(len(inp))], y=inp, name="inp", mode="markers+lines"), row=1, col=1)
|
||||
chart.add_trace(go.Scatter(x=[i for i in range(len(out_DFT))], y=out_DFT, name="out_DFT", mode="markers+lines"), row=2, col=1)
|
||||
chart.add_trace(go.Scatter(x=[i for i in range(len(out_FFT))], y=out_FFT, name="out_FFT", mode="markers+lines"), row=2, col=1)
|
||||
chart.add_trace(go.Scatter(x=[i for i in range(len(Fourier_error))], y=Fourier_error, name="error", mode="markers+lines"), row=3, col=1)
|
||||
chart.show()
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
def DFT_tester():
|
||||
inp = [-1 + 0.01*i + sin(2*pi*i/10) + cos(2*pi*i/20) + sin(2*pi*i/250) + sin(2*pi*i/2.001) for i in range(INP_L)]
|
||||
# inp = [sin(2*pi*i/2.001)for i in range(INP_L)]
|
||||
out_float = [0 for i in range(F_nyquist + 1)]
|
||||
out_FP = [0 for val in out_float]
|
||||
DFT_naive(inp, out_float)
|
||||
DFT_naive_FP(inp, out_FP)
|
||||
FP_error = []
|
||||
for a,b in zip(out_float, out_FP):
|
||||
FP_error.append(a - b/FP_acc)
|
||||
chart = make_subplots(rows=3, cols=1)
|
||||
chart.add_trace(go.Scatter(x=[i for i in range(len(inp))], y=inp, name="inp", mode="markers+lines"), row=1, col=1)
|
||||
chart.add_trace(go.Scatter(x=[i for i in range(len(out_float))], y=out_float, name="out_float", mode="markers+lines"), row=2, col=1)
|
||||
chart.add_trace(go.Scatter(x=[i for i in range(len(out_FP))], y=[val/FP_acc for val in out_FP], name="out_FP", mode="markers+lines"), row=2, col=1)
|
||||
chart.add_trace(go.Scatter(x=[i for i in range(len(out_FP))], y=FP_error, name="FP_error", mode="markers+lines"), row=3, col=1)
|
||||
chart.show()
|
||||
|
||||
|
||||
|
||||
|
||||
def sin_tester():
|
||||
N = 4000
|
||||
angs = [(i - N/2)/1000 for i in range(N)]
|
||||
@ -220,19 +124,26 @@ def sin_tester():
|
||||
print("angle, sin, cos:",phi, val_fp, val_cos_fp)
|
||||
res_FP.append(val_fp)
|
||||
res_cos_FP.append(val_cos_fp)
|
||||
chart = go.Figure()
|
||||
chart.add_trace(go.Scatter(x = angs, y=res_f, name="sin_float", mode="markers+lines"))
|
||||
chart.add_trace(go.Scatter(x = angs, y=[val/FP_acc for val in res_FP], name="sin_FP", mode="markers+lines"))
|
||||
chart.add_trace(go.Scatter(x = angs, y=[val/FP_acc for val in res_cos_FP], name="cos_FP", mode="markers+lines"))
|
||||
chart = make_subplots(rows=2, cols=1)
|
||||
|
||||
chart.add_trace(go.Scatter(x = angs, y=res_f, name="sin_float", mode="markers+lines"), row=1, col=1)
|
||||
chart.add_trace(go.Scatter(x = angs, y=[val/FP_acc for val in res_FP], name="sin_FP", mode="markers+lines"), row=1, col=1)
|
||||
chart.add_trace(go.Scatter(x = angs, y=[val/FP_acc for val in res_cos_FP], name="cos_FP", mode="markers+lines"), row=1, col=1)
|
||||
chart.add_trace(go.Scatter(x = angs, y=[a - b/FP_acc for a,b in zip(res_f, res_FP)], name="error", mode="markers+lines"), row=2, col=1)
|
||||
chart.update_xaxes(matches="x1", row=2, col=1)
|
||||
|
||||
chart.show()
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
#main()
|
||||
# DFT_tester()
|
||||
FFT_tester()
|
||||
#sin_tester()
|
||||
sin_tester()
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
124
python/naive_DFT.py
Executable file
124
python/naive_DFT.py
Executable file
@ -0,0 +1,124 @@
|
||||
#!/usr/bin/python3
|
||||
from math import sin, cos, pi, sqrt
|
||||
import plotly.graph_objs as go
|
||||
from plotly.subplots import make_subplots
|
||||
|
||||
from FFT import FFT_real
|
||||
from FP_trigonometry import *
|
||||
|
||||
|
||||
INP_L = 1024
|
||||
|
||||
|
||||
F_nyquist = INP_L//2
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
def abs_f(re, im):
|
||||
return sqrt(re*re + im*im)
|
||||
|
||||
|
||||
|
||||
|
||||
def DFT_naive(inp, out):
|
||||
for f in range(len(out)):
|
||||
val_re = 0
|
||||
val_im = 0
|
||||
for n in range(len(inp)):
|
||||
phi = 2*pi*f*n/INP_L
|
||||
val_re += inp[n] * sin(phi) /INP_L
|
||||
val_im += inp[n] * cos(phi) /INP_L
|
||||
|
||||
val_abs = abs_f(val_re, val_im)
|
||||
#print("F, val_abs:",f, val_abs)
|
||||
out[f] = val_abs
|
||||
|
||||
|
||||
|
||||
|
||||
def DFT_naive_FP(inp_float, out):
|
||||
inp = [val*FP_acc for val in inp_float]
|
||||
for f in range(len(out)):
|
||||
val_re = 0
|
||||
val_im = 0
|
||||
for n in range(len(inp)):
|
||||
phi = 2*pi_FP*f*n/INP_L
|
||||
phi_sin = sin_FP(phi)
|
||||
phi_cos = cos_FP(phi)
|
||||
#print(phi, phi_sin, phi_cos)
|
||||
val_re += inp[n] * phi_sin /INP_L
|
||||
val_im += inp[n] * phi_cos /INP_L
|
||||
|
||||
val_abs = abs_FP(val_re, val_im)
|
||||
#print("F, val_abs:",f, val_abs)
|
||||
out[f] = val_abs
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
def FFT_naive(inp, out):
|
||||
fft_out = FFT_real(inp)
|
||||
for i in range(len(fft_out)):
|
||||
val = fft_out[i]/len(inp)
|
||||
if (i < len(out)):
|
||||
out[i] = val
|
||||
else:
|
||||
pass
|
||||
#out.append(val)
|
||||
|
||||
def FFT_tester():
|
||||
inp = [-1 + 0.01*i + sin(2*pi*i/10) + cos(2*pi*i/20) + sin(2*pi*i/250) + sin(2*pi*i/2.001) for i in range(INP_L)]
|
||||
# inp = [sin(2*pi*i/2.001)for i in range(INP_L)]
|
||||
out_DFT = [0 for i in range(F_nyquist + 1)]
|
||||
out_FFT = [0 for val in range(F_nyquist + 1)]
|
||||
DFT_naive(inp, out_DFT)
|
||||
FFT_naive(inp, out_FFT)
|
||||
Fourier_error = []
|
||||
for a,b in zip(out_FFT, out_DFT):
|
||||
Fourier_error.append(a - b)
|
||||
chart = make_subplots(rows=3, cols=1)
|
||||
chart.add_trace(go.Scatter(x=[i for i in range(len(inp))], y=inp, name="inp", mode="markers+lines"), row=1, col=1)
|
||||
chart.add_trace(go.Scatter(x=[i for i in range(len(out_DFT))], y=out_DFT, name="out_DFT", mode="markers+lines"), row=2, col=1)
|
||||
chart.add_trace(go.Scatter(x=[i for i in range(len(out_FFT))], y=out_FFT, name="out_FFT", mode="markers+lines"), row=2, col=1)
|
||||
chart.add_trace(go.Scatter(x=[i for i in range(len(Fourier_error))], y=Fourier_error, name="error", mode="markers+lines"), row=3, col=1)
|
||||
chart.update_xaxes(matches="x2", row=3, col=1)
|
||||
chart.show()
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
def DFT_tester():
|
||||
inp = [-1 + 0.01*i + sin(2*pi*i/10) + cos(2*pi*i/20) + sin(2*pi*i/250) + sin(2*pi*i/2.001) for i in range(INP_L)]
|
||||
# inp = [sin(2*pi*i/2.001)for i in range(INP_L)]
|
||||
out_float = [0 for i in range(F_nyquist + 1)]
|
||||
out_FP = [0 for val in out_float]
|
||||
DFT_naive(inp, out_float)
|
||||
DFT_naive_FP(inp, out_FP)
|
||||
FP_error = []
|
||||
for a,b in zip(out_float, out_FP):
|
||||
FP_error.append(a - b/FP_acc)
|
||||
chart = make_subplots(rows=3, cols=1)
|
||||
chart.add_trace(go.Scatter(x=[i for i in range(len(inp))], y=inp, name="inp", mode="markers+lines"), row=1, col=1)
|
||||
chart.add_trace(go.Scatter(x=[i for i in range(len(out_float))], y=out_float, name="out_float", mode="markers+lines"), row=2, col=1)
|
||||
chart.add_trace(go.Scatter(x=[i for i in range(len(out_FP))], y=[val/FP_acc for val in out_FP], name="out_FP", mode="markers+lines"), row=2, col=1)
|
||||
chart.add_trace(go.Scatter(x=[i for i in range(len(out_FP))], y=FP_error, name="FP_error", mode="markers+lines"), row=3, col=1)
|
||||
chart.update_xaxes(matches="x2", row=3, col=1)
|
||||
chart.show()
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
#main()
|
||||
# DFT_tester()
|
||||
FFT_tester()
|
||||
#sin_tester()
|
||||
Reference in New Issue
Block a user