What I changed
- Core/Inc/main.h:76
- Set ADC_BUFF_SIZE from 50 to 64 so each half is even (32). This keeps the “i &
1” parity consistent across half-buffer boundaries.
- Core/Src/stm32f4xx_it.c:388
- Fixed N after splitting the first half: ADC_proc.N = (ADC_BUFF_SIZE/2 -
Sweep_state.curr_step_start_DMA_N)/2;
- Previously it used (Sweep_state.curr_step_start_DMA_N)/2, which was wrong for
that segment.
Why this helps
- With ADC_BUFF_SIZE=50, half-size is 25 (odd). That flips ON/OFF labeling each half
because i & 1 parity shifts by 25, mixing levels and driving avg_ON and avg_OFF
together.
- The N bug skewed normalization, further flattening differences between averages.
How to verify
- Build and flash: make && make flash.
- Observe avg_ON/avg_OFF over CDC. They should now differ consistently; inverting
meандр should swap them cleanly.
- If still needed, I can add a global sample counter (sample_seq) for fully robust
ON/OFF classification without relying on buffer indices.
431 lines
14 KiB
C
431 lines
14 KiB
C
/* USER CODE BEGIN Header */
|
|
/**
|
|
******************************************************************************
|
|
* @file : main.c
|
|
* @brief : Main program body
|
|
******************************************************************************
|
|
* @attention
|
|
*
|
|
* Copyright (c) 2025 STMicroelectronics.
|
|
* All rights reserved.
|
|
*
|
|
* This software is licensed under terms that can be found in the LICENSE file
|
|
* in the root directory of this software component.
|
|
* If no LICENSE file comes with this software, it is provided AS-IS.
|
|
*
|
|
******************************************************************************
|
|
*/
|
|
/* USER CODE END Header */
|
|
/* Includes ------------------------------------------------------------------*/
|
|
#include "main.h"
|
|
#include "usb_device.h"
|
|
|
|
/* Private includes ----------------------------------------------------------*/
|
|
/* USER CODE BEGIN Includes */
|
|
|
|
/* USER CODE END Includes */
|
|
|
|
/* Private typedef -----------------------------------------------------------*/
|
|
/* USER CODE BEGIN PTD */
|
|
|
|
/* USER CODE END PTD */
|
|
|
|
/* Private define ------------------------------------------------------------*/
|
|
/* USER CODE BEGIN PD */
|
|
|
|
/* USER CODE END PD */
|
|
|
|
/* Private macro -------------------------------------------------------------*/
|
|
/* USER CODE BEGIN PM */
|
|
|
|
/* USER CODE END PM */
|
|
|
|
/* Private variables ---------------------------------------------------------*/
|
|
ADC_HandleTypeDef hadc1;
|
|
DMA_HandleTypeDef hdma_adc1;
|
|
|
|
/* USER CODE BEGIN PV */
|
|
|
|
/* USER CODE END PV */
|
|
|
|
/* Private function prototypes -----------------------------------------------*/
|
|
void SystemClock_Config(void);
|
|
static void MX_GPIO_Init(void);
|
|
static void MX_DMA_Init(void);
|
|
static void MX_ADC1_Init(void);
|
|
/* USER CODE BEGIN PFP */
|
|
|
|
/* USER CODE END PFP */
|
|
|
|
/* Private user code ---------------------------------------------------------*/
|
|
/* USER CODE BEGIN 0 */
|
|
/* ADC_proc/ADC_proc_shadow/Sweep_state definitions */
|
|
volatile struct ADC_proc_typedef ADC_proc, ADC_proc_shadow;
|
|
volatile struct Sweep_state_typedef Sweep_state;
|
|
volatile uint32_t curr_step_start_N = 0;
|
|
|
|
/* ADC1 circular DMA buffer definition */
|
|
uint16_t ADC1_buff_circular[ADC_BUFF_SIZE];
|
|
|
|
|
|
char ADC_msg[] = "stp ?????? ??????????\r\nSweep_start\n\r";
|
|
#define ADC_msg_len 24
|
|
#define ADC_msg_len_Sweep_start 37
|
|
|
|
|
|
|
|
//char ADC_msg[] = "stp ?????? ?????????? ??????????\r\nSweep_start\n\r";
|
|
//#define ADC_msg_len 35
|
|
//#define ADC_msg_len_Sweep_start 48
|
|
#define ADC_msg_val_ON_pos 12
|
|
#define ADC_msg_val_OFF_pos 23
|
|
|
|
#define ADC_msg_step_pos 4
|
|
/* USER CODE END 0 */
|
|
|
|
/**
|
|
* @brief The application entry point.
|
|
* @retval int
|
|
*/
|
|
int main(void)
|
|
{
|
|
|
|
/* USER CODE BEGIN 1 */
|
|
|
|
/* USER CODE END 1 */
|
|
|
|
/* MCU Configuration--------------------------------------------------------*/
|
|
|
|
/* Reset of all peripherals, Initializes the Flash interface and the Systick. */
|
|
HAL_Init();
|
|
|
|
/* USER CODE BEGIN Init */
|
|
|
|
/* USER CODE END Init */
|
|
|
|
/* Configure the system clock */
|
|
SystemClock_Config();
|
|
|
|
/* USER CODE BEGIN SysInit */
|
|
|
|
/* USER CODE END SysInit */
|
|
|
|
/* Initialize all configured peripherals */
|
|
MX_GPIO_Init();
|
|
MX_DMA_Init();
|
|
MX_ADC1_Init();
|
|
MX_USB_DEVICE_Init();
|
|
/* USER CODE BEGIN 2 */
|
|
HAL_GPIO_WritePin(LED_BLUE_GPIO_Port, LED_BLUE_Pin, GPIO_PIN_SET);
|
|
HAL_ADC_Start_DMA(&hadc1, (uint32_t*)ADC1_buff_circular, ADC_BUFF_SIZE);
|
|
|
|
ADC_proc_shadow.status = 0; // ADC started
|
|
ADC_proc_shadow.N = 0;
|
|
ADC_proc_shadow.sum_ON = 0;
|
|
ADC_proc_shadow.avg_ON = 0;
|
|
ADC_proc_shadow.sum_OFF = 0;
|
|
ADC_proc_shadow.avg_OFF = 0;
|
|
|
|
ADC_proc.status = 0; // ADC started
|
|
ADC_proc.N = 0;
|
|
ADC_proc.sum_ON = 0;
|
|
ADC_proc.avg_ON = 0;
|
|
ADC_proc.sum_OFF = 0;
|
|
ADC_proc.avg_OFF = 0;
|
|
|
|
uint32_t curr_points_N_max = 100;
|
|
uint32_t curr_points_N =0;
|
|
|
|
/* USER CODE END 2 */
|
|
|
|
/* Infinite loop */
|
|
/* USER CODE BEGIN WHILE */
|
|
while (1)
|
|
{
|
|
//HAL_GPIO_TogglePin(LED_RED_GPIO_Port, LED_RED_Pin);
|
|
//HAL_Delay(100);
|
|
|
|
if (ADC_proc_shadow.status == 2) {
|
|
// ADC_proc_shadow.avg_ON = ADC_proc_shadow.sum_ON / ADC_proc_shadow.N;
|
|
ADC_proc_shadow.avg_OFF = ADC_proc_shadow.sum_OFF / ADC_proc_shadow.N;
|
|
ADC_proc_shadow.avg_ON = ADC_proc_shadow.sum_ON / ADC_proc_shadow.N;
|
|
//ADC_proc_shadow.avg_ON = ADC_proc_shadow.avg_OFF;
|
|
ADC_proc_shadow.avg_ON = ADC_proc_shadow.avg_ON - ADC_proc_shadow.avg_OFF;
|
|
ADC_proc_shadow.status = 1; // reset for next accumulation
|
|
ADC_proc_shadow.sum = 0;
|
|
ADC_proc_shadow.N = 0;
|
|
|
|
|
|
ADC_msg[ADC_msg_val_ON_pos + 0] = (ADC_proc_shadow.avg_ON / 1000000000) % 10 + '0';
|
|
ADC_msg[ADC_msg_val_ON_pos + 1] = (ADC_proc_shadow.avg_ON / 100000000) % 10 + '0';
|
|
ADC_msg[ADC_msg_val_ON_pos + 2] = (ADC_proc_shadow.avg_ON / 10000000) % 10 + '0';
|
|
ADC_msg[ADC_msg_val_ON_pos + 3] = (ADC_proc_shadow.avg_ON / 1000000) % 10 + '0';
|
|
ADC_msg[ADC_msg_val_ON_pos + 4] = (ADC_proc_shadow.avg_ON / 100000) % 10 + '0';
|
|
ADC_msg[ADC_msg_val_ON_pos + 5] = (ADC_proc_shadow.avg_ON / 10000) % 10 + '0';
|
|
ADC_msg[ADC_msg_val_ON_pos + 6] = (ADC_proc_shadow.avg_ON / 1000) % 10 + '0';
|
|
ADC_msg[ADC_msg_val_ON_pos + 7] = (ADC_proc_shadow.avg_ON / 100) % 10 + '0';
|
|
ADC_msg[ADC_msg_val_ON_pos + 8] = (ADC_proc_shadow.avg_ON / 10) % 10 + '0';
|
|
ADC_msg[ADC_msg_val_ON_pos + 9] = (ADC_proc_shadow.avg_ON / 1) % 10 + '0';
|
|
|
|
/*
|
|
ADC_msg[ADC_msg_val_OFF_pos + 0] = (ADC_proc_shadow.avg_OFF / 1000000000) % 10 + '0';
|
|
ADC_msg[ADC_msg_val_OFF_pos + 1] = (ADC_proc_shadow.avg_OFF / 100000000) % 10 + '0';
|
|
ADC_msg[ADC_msg_val_OFF_pos + 2] = (ADC_proc_shadow.avg_OFF / 10000000) % 10 + '0';
|
|
ADC_msg[ADC_msg_val_OFF_pos + 3] = (ADC_proc_shadow.avg_OFF / 1000000) % 10 + '0';
|
|
ADC_msg[ADC_msg_val_OFF_pos + 4] = (ADC_proc_shadow.avg_OFF / 100000) % 10 + '0';
|
|
ADC_msg[ADC_msg_val_OFF_pos + 5] = (ADC_proc_shadow.avg_OFF / 10000) % 10 + '0';
|
|
ADC_msg[ADC_msg_val_OFF_pos + 6] = (ADC_proc_shadow.avg_OFF / 1000) % 10 + '0';
|
|
ADC_msg[ADC_msg_val_OFF_pos + 7] = (ADC_proc_shadow.avg_OFF / 100) % 10 + '0';
|
|
ADC_msg[ADC_msg_val_OFF_pos + 8] = (ADC_proc_shadow.avg_OFF / 10) % 10 + '0';
|
|
ADC_msg[ADC_msg_val_OFF_pos + 9] = (ADC_proc_shadow.avg_OFF / 1) % 10 + '0';
|
|
*/
|
|
|
|
ADC_msg[ADC_msg_step_pos + 0] = (Sweep_state.curr_step_N / 100000) % 10 + '0';
|
|
ADC_msg[ADC_msg_step_pos + 1] = (Sweep_state.curr_step_N / 10000) % 10 + '0';
|
|
ADC_msg[ADC_msg_step_pos + 2] = (Sweep_state.curr_step_N / 1000) % 10 + '0';
|
|
ADC_msg[ADC_msg_step_pos + 3] = (Sweep_state.curr_step_N / 100) % 10 + '0';
|
|
ADC_msg[ADC_msg_step_pos + 4] = (Sweep_state.curr_step_N / 10) % 10 + '0';
|
|
ADC_msg[ADC_msg_step_pos + 5] = (Sweep_state.curr_step_N / 1) % 10 + '0';
|
|
|
|
|
|
//HAL_GPIO_TogglePin(LED_RED_GPIO_Port, LED_RED_Pin);
|
|
|
|
|
|
if (Sweep_state.curr_step_N > 10000){
|
|
Sweep_state.curr_step_N = 0;
|
|
Sweep_state.sweep_cycle_started_flag = 1;
|
|
}
|
|
if (Sweep_state.sweep_cycle_started_flag == 1){
|
|
Sweep_state.sweep_cycle_started_flag = 0; // reset sweep cycle flag
|
|
HAL_GPIO_TogglePin(LED_RED_GPIO_Port, LED_RED_Pin);
|
|
//CDC_Transmit_FS((uint8_t *)ADC_msg, ADC_msg_len_Sweep_start);
|
|
while (CDC_Transmit_FS((uint8_t *)ADC_msg, ADC_msg_len_Sweep_start) == USBD_BUSY){
|
|
//HAL_Delay(1);
|
|
}
|
|
|
|
}else{
|
|
CDC_Transmit_FS((uint8_t *)ADC_msg, ADC_msg_len);
|
|
|
|
}
|
|
|
|
}
|
|
//CDC_Transmit_FS((uint8_t *)"Hello from STM32!\r\n", 19);
|
|
|
|
/* USER CODE END WHILE */
|
|
|
|
/* USER CODE BEGIN 3 */
|
|
}
|
|
/* USER CODE END 3 */
|
|
}
|
|
|
|
/**
|
|
* @brief System Clock Configuration
|
|
* @retval None
|
|
*/
|
|
void SystemClock_Config(void)
|
|
{
|
|
RCC_OscInitTypeDef RCC_OscInitStruct = {0};
|
|
RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
|
|
|
|
/** Configure the main internal regulator output voltage
|
|
*/
|
|
__HAL_RCC_PWR_CLK_ENABLE();
|
|
__HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);
|
|
|
|
/** Initializes the RCC Oscillators according to the specified parameters
|
|
* in the RCC_OscInitTypeDef structure.
|
|
*/
|
|
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
|
|
RCC_OscInitStruct.HSEState = RCC_HSE_ON;
|
|
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
|
|
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
|
|
RCC_OscInitStruct.PLL.PLLM = 8;
|
|
RCC_OscInitStruct.PLL.PLLN = 336;
|
|
RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2;
|
|
RCC_OscInitStruct.PLL.PLLQ = 7;
|
|
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
|
|
{
|
|
Error_Handler();
|
|
}
|
|
|
|
/** Initializes the CPU, AHB and APB buses clocks
|
|
*/
|
|
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
|
|
|RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
|
|
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
|
|
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
|
|
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV4;
|
|
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV2;
|
|
|
|
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_5) != HAL_OK)
|
|
{
|
|
Error_Handler();
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @brief ADC1 Initialization Function
|
|
* @param None
|
|
* @retval None
|
|
*/
|
|
static void MX_ADC1_Init(void)
|
|
{
|
|
|
|
/* USER CODE BEGIN ADC1_Init 0 */
|
|
|
|
/* USER CODE END ADC1_Init 0 */
|
|
|
|
ADC_ChannelConfTypeDef sConfig = {0};
|
|
|
|
/* USER CODE BEGIN ADC1_Init 1 */
|
|
|
|
/* USER CODE END ADC1_Init 1 */
|
|
|
|
/** Configure the global features of the ADC (Clock, Resolution, Data Alignment and number of conversion)
|
|
*/
|
|
hadc1.Instance = ADC1;
|
|
hadc1.Init.ClockPrescaler = ADC_CLOCK_SYNC_PCLK_DIV4;
|
|
hadc1.Init.Resolution = ADC_RESOLUTION_12B;
|
|
hadc1.Init.ScanConvMode = DISABLE;
|
|
hadc1.Init.ContinuousConvMode = DISABLE;
|
|
hadc1.Init.DiscontinuousConvMode = DISABLE;
|
|
hadc1.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_RISING;
|
|
hadc1.Init.ExternalTrigConv = ADC_EXTERNALTRIGCONV_Ext_IT11;
|
|
hadc1.Init.DataAlign = ADC_DATAALIGN_RIGHT;
|
|
hadc1.Init.NbrOfConversion = 1;
|
|
hadc1.Init.DMAContinuousRequests = ENABLE;
|
|
hadc1.Init.EOCSelection = ADC_EOC_SINGLE_CONV;
|
|
if (HAL_ADC_Init(&hadc1) != HAL_OK)
|
|
{
|
|
Error_Handler();
|
|
}
|
|
|
|
/** Configure for the selected ADC regular channel its corresponding rank in the sequencer and its sample time.
|
|
*/
|
|
sConfig.Channel = ADC_CHANNEL_3;
|
|
sConfig.Rank = 1;
|
|
sConfig.SamplingTime = ADC_SAMPLETIME_3CYCLES;
|
|
if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK)
|
|
{
|
|
Error_Handler();
|
|
}
|
|
/* USER CODE BEGIN ADC1_Init 2 */
|
|
|
|
/* USER CODE END ADC1_Init 2 */
|
|
|
|
}
|
|
|
|
/**
|
|
* Enable DMA controller clock
|
|
*/
|
|
static void MX_DMA_Init(void)
|
|
{
|
|
|
|
/* DMA controller clock enable */
|
|
__HAL_RCC_DMA2_CLK_ENABLE();
|
|
|
|
/* DMA interrupt init */
|
|
/* DMA2_Stream0_IRQn interrupt configuration */
|
|
HAL_NVIC_SetPriority(DMA2_Stream0_IRQn, 0, 0);
|
|
HAL_NVIC_EnableIRQ(DMA2_Stream0_IRQn);
|
|
|
|
}
|
|
|
|
/**
|
|
* @brief GPIO Initialization Function
|
|
* @param None
|
|
* @retval None
|
|
*/
|
|
static void MX_GPIO_Init(void)
|
|
{
|
|
GPIO_InitTypeDef GPIO_InitStruct = {0};
|
|
/* USER CODE BEGIN MX_GPIO_Init_1 */
|
|
|
|
/* USER CODE END MX_GPIO_Init_1 */
|
|
|
|
/* GPIO Ports Clock Enable */
|
|
__HAL_RCC_GPIOH_CLK_ENABLE();
|
|
__HAL_RCC_GPIOC_CLK_ENABLE();
|
|
__HAL_RCC_GPIOA_CLK_ENABLE();
|
|
__HAL_RCC_GPIOF_CLK_ENABLE();
|
|
__HAL_RCC_GPIOB_CLK_ENABLE();
|
|
|
|
/*Configure GPIO pin Output Level */
|
|
HAL_GPIO_WritePin(LED_RED_GPIO_Port, LED_RED_Pin, GPIO_PIN_RESET);
|
|
|
|
/*Configure GPIO pin Output Level */
|
|
HAL_GPIO_WritePin(LED_BLUE_GPIO_Port, LED_BLUE_Pin, GPIO_PIN_SET);
|
|
|
|
/*Configure GPIO pin : CURR_STEP_START_TRG_Pin */
|
|
GPIO_InitStruct.Pin = CURR_STEP_START_TRG_Pin;
|
|
GPIO_InitStruct.Mode = GPIO_MODE_IT_RISING_FALLING;
|
|
GPIO_InitStruct.Pull = GPIO_PULLDOWN;
|
|
HAL_GPIO_Init(CURR_STEP_START_TRG_GPIO_Port, &GPIO_InitStruct);
|
|
|
|
/*Configure GPIO pin : SWEEP_CYCLE_START_TRG_Pin */
|
|
GPIO_InitStruct.Pin = SWEEP_CYCLE_START_TRG_Pin;
|
|
GPIO_InitStruct.Mode = GPIO_MODE_IT_RISING;
|
|
GPIO_InitStruct.Pull = GPIO_PULLUP;
|
|
HAL_GPIO_Init(SWEEP_CYCLE_START_TRG_GPIO_Port, &GPIO_InitStruct);
|
|
|
|
/*Configure GPIO pin : PF11 */
|
|
GPIO_InitStruct.Pin = GPIO_PIN_11;
|
|
GPIO_InitStruct.Mode = GPIO_MODE_IT_RISING;
|
|
GPIO_InitStruct.Pull = GPIO_NOPULL;
|
|
HAL_GPIO_Init(GPIOF, &GPIO_InitStruct);
|
|
|
|
/*Configure GPIO pins : LED_RED_Pin LED_BLUE_Pin */
|
|
GPIO_InitStruct.Pin = LED_RED_Pin|LED_BLUE_Pin;
|
|
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
|
|
GPIO_InitStruct.Pull = GPIO_NOPULL;
|
|
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
|
|
HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
|
|
|
|
/* EXTI interrupt init*/
|
|
HAL_NVIC_SetPriority(EXTI0_IRQn, 0, 0);
|
|
HAL_NVIC_EnableIRQ(EXTI0_IRQn);
|
|
|
|
HAL_NVIC_SetPriority(EXTI3_IRQn, 0, 0);
|
|
HAL_NVIC_EnableIRQ(EXTI3_IRQn);
|
|
|
|
/* USER CODE BEGIN MX_GPIO_Init_2 */
|
|
|
|
/* USER CODE END MX_GPIO_Init_2 */
|
|
}
|
|
|
|
/* USER CODE BEGIN 4 */
|
|
|
|
/* USER CODE END 4 */
|
|
|
|
/**
|
|
* @brief This function is executed in case of error occurrence.
|
|
* @retval None
|
|
*/
|
|
void Error_Handler(void)
|
|
{
|
|
/* USER CODE BEGIN Error_Handler_Debug */
|
|
/* User can add his own implementation to report the HAL error return state */
|
|
__disable_irq();
|
|
while (1)
|
|
{
|
|
}
|
|
/* USER CODE END Error_Handler_Debug */
|
|
}
|
|
|
|
#ifdef USE_FULL_ASSERT
|
|
/**
|
|
* @brief Reports the name of the source file and the source line number
|
|
* where the assert_param error has occurred.
|
|
* @param file: pointer to the source file name
|
|
* @param line: assert_param error line source number
|
|
* @retval None
|
|
*/
|
|
void assert_failed(uint8_t *file, uint32_t line)
|
|
{
|
|
/* USER CODE BEGIN 6 */
|
|
/* User can add his own implementation to report the file name and line number,
|
|
ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
|
|
/* USER CODE END 6 */
|
|
}
|
|
#endif /* USE_FULL_ASSERT */
|