Files
RFG_stm32_ADC_STM32F429/Core/Src/main.c

398 lines
12 KiB
C

/* USER CODE BEGIN Header */
/**
******************************************************************************
* @file : main.c
* @brief : Main program body
******************************************************************************
* @attention
*
* Copyright (c) 2025 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
#include "usb_device.h"
/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
/* USER CODE END Includes */
/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */
/* USER CODE END PTD */
/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
/* USER CODE END PD */
/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */
/* USER CODE END PM */
/* Private variables ---------------------------------------------------------*/
ADC_HandleTypeDef hadc1;
DMA_HandleTypeDef hdma_adc1;
/* USER CODE BEGIN PV */
/* USER CODE END PV */
/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_DMA_Init(void);
static void MX_ADC1_Init(void);
/* USER CODE BEGIN PFP */
/* USER CODE END PFP */
/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */
/* ADC_proc/ADC_proc_shadow/Sweep_state definitions */
volatile struct ADC_proc_typedef ADC_proc, ADC_proc_shadow;
volatile struct Sweep_state_typedef Sweep_state;
volatile uint32_t curr_step_start_N = 0;
/* ADC1 circular DMA buffer definition */
uint16_t ADC1_buff_circular[ADC_BUFF_SIZE];
//char ADC_msg[] = "curr_step ?????? ??????????\r\nSweep_start\n\r";
char ADC_msg[] = "stp ?????? ??????????\r\nSweep_start\n\r";
#define ADC_msg_len 24
#define ADC_msg_len_Sweep_start 37
#define ADC_msg_val_pos 12
#define ADC_msg_step_pos 4
/* USER CODE END 0 */
/**
* @brief The application entry point.
* @retval int
*/
int main(void)
{
/* USER CODE BEGIN 1 */
/* USER CODE END 1 */
/* MCU Configuration--------------------------------------------------------*/
/* Reset of all peripherals, Initializes the Flash interface and the Systick. */
HAL_Init();
/* USER CODE BEGIN Init */
/* USER CODE END Init */
/* Configure the system clock */
SystemClock_Config();
/* USER CODE BEGIN SysInit */
/* USER CODE END SysInit */
/* Initialize all configured peripherals */
MX_GPIO_Init();
MX_DMA_Init();
MX_ADC1_Init();
MX_USB_DEVICE_Init();
/* USER CODE BEGIN 2 */
HAL_GPIO_WritePin(LED_BLUE_GPIO_Port, LED_BLUE_Pin, GPIO_PIN_SET);
HAL_ADC_Start_DMA(&hadc1, (uint32_t*)ADC1_buff_circular, ADC_BUFF_SIZE);
ADC_proc_shadow.status = 0; // ADC started
ADC_proc_shadow.N = 0;
ADC_proc_shadow.sum = 0;
ADC_proc_shadow.avg = 0;
ADC_proc.status = 0; // ADC started
ADC_proc.N = 0;
ADC_proc.sum = 0;
ADC_proc.avg = 0;
uint32_t curr_points_N_max = 100;
uint32_t curr_points_N =0;
/* USER CODE END 2 */
/* Infinite loop */
/* USER CODE BEGIN WHILE */
while (1)
{
//HAL_GPIO_TogglePin(LED_RED_GPIO_Port, LED_RED_Pin);
//HAL_Delay(100);
if (ADC_proc_shadow.status == 2) {
ADC_proc_shadow.avg = ADC_proc_shadow.sum / ADC_proc_shadow.N;
ADC_proc_shadow.status = 1; // reset for next accumulation
ADC_proc_shadow.sum = 0;
ADC_proc_shadow.N = 0;
ADC_msg[ADC_msg_val_pos + 0] = (ADC_proc_shadow.avg / 10000000000) % 10 + '0';
ADC_msg[ADC_msg_val_pos + 1] = (ADC_proc_shadow.avg / 1000000000) % 10 + '0';
ADC_msg[ADC_msg_val_pos + 2] = (ADC_proc_shadow.avg / 10000000) % 10 + '0';
ADC_msg[ADC_msg_val_pos + 3] = (ADC_proc_shadow.avg / 1000000) % 10 + '0';
ADC_msg[ADC_msg_val_pos + 4] = (ADC_proc_shadow.avg / 100000) % 10 + '0';
ADC_msg[ADC_msg_val_pos + 5] = (ADC_proc_shadow.avg / 10000) % 10 + '0';
ADC_msg[ADC_msg_val_pos + 6] = (ADC_proc_shadow.avg / 1000) % 10 + '0';
ADC_msg[ADC_msg_val_pos + 7] = (ADC_proc_shadow.avg / 100) % 10 + '0';
ADC_msg[ADC_msg_val_pos + 8] = (ADC_proc_shadow.avg / 10) % 10 + '0';
ADC_msg[ADC_msg_val_pos + 9] = (ADC_proc_shadow.avg / 1) % 10 + '0';
ADC_msg[ADC_msg_step_pos + 0] = (Sweep_state.curr_step_N / 100000) % 10 + '0';
ADC_msg[ADC_msg_step_pos + 1] = (Sweep_state.curr_step_N / 10000) % 10 + '0';
ADC_msg[ADC_msg_step_pos + 2] = (Sweep_state.curr_step_N / 1000) % 10 + '0';
ADC_msg[ADC_msg_step_pos + 3] = (Sweep_state.curr_step_N / 100) % 10 + '0';
ADC_msg[ADC_msg_step_pos + 4] = (Sweep_state.curr_step_N / 10) % 10 + '0';
ADC_msg[ADC_msg_step_pos + 5] = (Sweep_state.curr_step_N / 1) % 10 + '0';
//HAL_GPIO_TogglePin(LED_RED_GPIO_Port, LED_RED_Pin);
if (Sweep_state.curr_step_N > 10000){
Sweep_state.curr_step_N = 0;
Sweep_state.sweep_cycle_started_flag = 1;
}
if (Sweep_state.sweep_cycle_started_flag == 1){
Sweep_state.sweep_cycle_started_flag = 0; // reset sweep cycle flag
HAL_GPIO_TogglePin(LED_RED_GPIO_Port, LED_RED_Pin);
CDC_Transmit_FS((uint8_t *)ADC_msg, ADC_msg_len_Sweep_start);
}else{
CDC_Transmit_FS((uint8_t *)ADC_msg, ADC_msg_len);
}
}
//CDC_Transmit_FS((uint8_t *)"Hello from STM32!\r\n", 19);
/* USER CODE END WHILE */
/* USER CODE BEGIN 3 */
}
/* USER CODE END 3 */
}
/**
* @brief System Clock Configuration
* @retval None
*/
void SystemClock_Config(void)
{
RCC_OscInitTypeDef RCC_OscInitStruct = {0};
RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
/** Configure the main internal regulator output voltage
*/
__HAL_RCC_PWR_CLK_ENABLE();
__HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);
/** Initializes the RCC Oscillators according to the specified parameters
* in the RCC_OscInitTypeDef structure.
*/
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
RCC_OscInitStruct.HSEState = RCC_HSE_ON;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
RCC_OscInitStruct.PLL.PLLM = 8;
RCC_OscInitStruct.PLL.PLLN = 336;
RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2;
RCC_OscInitStruct.PLL.PLLQ = 7;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
{
Error_Handler();
}
/** Initializes the CPU, AHB and APB buses clocks
*/
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
|RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV4;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV2;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_5) != HAL_OK)
{
Error_Handler();
}
}
/**
* @brief ADC1 Initialization Function
* @param None
* @retval None
*/
static void MX_ADC1_Init(void)
{
/* USER CODE BEGIN ADC1_Init 0 */
/* USER CODE END ADC1_Init 0 */
ADC_ChannelConfTypeDef sConfig = {0};
/* USER CODE BEGIN ADC1_Init 1 */
/* USER CODE END ADC1_Init 1 */
/** Configure the global features of the ADC (Clock, Resolution, Data Alignment and number of conversion)
*/
hadc1.Instance = ADC1;
hadc1.Init.ClockPrescaler = ADC_CLOCK_SYNC_PCLK_DIV4;
hadc1.Init.Resolution = ADC_RESOLUTION_12B;
hadc1.Init.ScanConvMode = DISABLE;
hadc1.Init.ContinuousConvMode = DISABLE;
hadc1.Init.DiscontinuousConvMode = DISABLE;
hadc1.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_RISING;
hadc1.Init.ExternalTrigConv = ADC_EXTERNALTRIGCONV_Ext_IT11;
hadc1.Init.DataAlign = ADC_DATAALIGN_RIGHT;
hadc1.Init.NbrOfConversion = 1;
hadc1.Init.DMAContinuousRequests = ENABLE;
hadc1.Init.EOCSelection = ADC_EOC_SINGLE_CONV;
if (HAL_ADC_Init(&hadc1) != HAL_OK)
{
Error_Handler();
}
/** Configure for the selected ADC regular channel its corresponding rank in the sequencer and its sample time.
*/
sConfig.Channel = ADC_CHANNEL_3;
sConfig.Rank = 1;
sConfig.SamplingTime = ADC_SAMPLETIME_3CYCLES;
if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN ADC1_Init 2 */
/* USER CODE END ADC1_Init 2 */
}
/**
* Enable DMA controller clock
*/
static void MX_DMA_Init(void)
{
/* DMA controller clock enable */
__HAL_RCC_DMA2_CLK_ENABLE();
/* DMA interrupt init */
/* DMA2_Stream0_IRQn interrupt configuration */
HAL_NVIC_SetPriority(DMA2_Stream0_IRQn, 0, 0);
HAL_NVIC_EnableIRQ(DMA2_Stream0_IRQn);
}
/**
* @brief GPIO Initialization Function
* @param None
* @retval None
*/
static void MX_GPIO_Init(void)
{
GPIO_InitTypeDef GPIO_InitStruct = {0};
/* USER CODE BEGIN MX_GPIO_Init_1 */
/* USER CODE END MX_GPIO_Init_1 */
/* GPIO Ports Clock Enable */
__HAL_RCC_GPIOH_CLK_ENABLE();
__HAL_RCC_GPIOC_CLK_ENABLE();
__HAL_RCC_GPIOA_CLK_ENABLE();
__HAL_RCC_GPIOF_CLK_ENABLE();
__HAL_RCC_GPIOB_CLK_ENABLE();
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(LED_RED_GPIO_Port, LED_RED_Pin, GPIO_PIN_RESET);
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(LED_BLUE_GPIO_Port, LED_BLUE_Pin, GPIO_PIN_SET);
/*Configure GPIO pin : CURR_STEP_START_TRG_Pin */
GPIO_InitStruct.Pin = CURR_STEP_START_TRG_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_IT_RISING_FALLING;
GPIO_InitStruct.Pull = GPIO_PULLDOWN;
HAL_GPIO_Init(CURR_STEP_START_TRG_GPIO_Port, &GPIO_InitStruct);
/*Configure GPIO pin : SWEEP_CYCLE_START_TRG_Pin */
GPIO_InitStruct.Pin = SWEEP_CYCLE_START_TRG_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_IT_RISING;
GPIO_InitStruct.Pull = GPIO_PULLUP;
HAL_GPIO_Init(SWEEP_CYCLE_START_TRG_GPIO_Port, &GPIO_InitStruct);
/*Configure GPIO pin : PF11 */
GPIO_InitStruct.Pin = GPIO_PIN_11;
GPIO_InitStruct.Mode = GPIO_MODE_IT_RISING;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(GPIOF, &GPIO_InitStruct);
/*Configure GPIO pins : LED_RED_Pin LED_BLUE_Pin */
GPIO_InitStruct.Pin = LED_RED_Pin|LED_BLUE_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
/* EXTI interrupt init*/
HAL_NVIC_SetPriority(EXTI0_IRQn, 0, 0);
HAL_NVIC_EnableIRQ(EXTI0_IRQn);
HAL_NVIC_SetPriority(EXTI3_IRQn, 0, 0);
HAL_NVIC_EnableIRQ(EXTI3_IRQn);
/* USER CODE BEGIN MX_GPIO_Init_2 */
/* USER CODE END MX_GPIO_Init_2 */
}
/* USER CODE BEGIN 4 */
/* USER CODE END 4 */
/**
* @brief This function is executed in case of error occurrence.
* @retval None
*/
void Error_Handler(void)
{
/* USER CODE BEGIN Error_Handler_Debug */
/* User can add his own implementation to report the HAL error return state */
__disable_irq();
while (1)
{
}
/* USER CODE END Error_Handler_Debug */
}
#ifdef USE_FULL_ASSERT
/**
* @brief Reports the name of the source file and the source line number
* where the assert_param error has occurred.
* @param file: pointer to the source file name
* @param line: assert_param error line source number
* @retval None
*/
void assert_failed(uint8_t *file, uint32_t line)
{
/* USER CODE BEGIN 6 */
/* User can add his own implementation to report the file name and line number,
ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
/* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */