/* USER CODE BEGIN Header */ /** ****************************************************************************** * @file : main.c * @brief : Main program body ****************************************************************************** * @attention * * Copyright (c) 2025 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** */ /* USER CODE END Header */ /* Includes ------------------------------------------------------------------*/ #include "main.h" #include "usb_device.h" /* Private includes ----------------------------------------------------------*/ /* USER CODE BEGIN Includes */ /* USER CODE END Includes */ /* Private typedef -----------------------------------------------------------*/ /* USER CODE BEGIN PTD */ /* USER CODE END PTD */ /* Private define ------------------------------------------------------------*/ /* USER CODE BEGIN PD */ /* USER CODE END PD */ /* Private macro -------------------------------------------------------------*/ /* USER CODE BEGIN PM */ /* USER CODE END PM */ /* Private variables ---------------------------------------------------------*/ ADC_HandleTypeDef hadc1; DMA_HandleTypeDef hdma_adc1; /* USER CODE BEGIN PV */ /* USER CODE END PV */ /* Private function prototypes -----------------------------------------------*/ void SystemClock_Config(void); static void MX_GPIO_Init(void); static void MX_DMA_Init(void); static void MX_ADC1_Init(void); /* USER CODE BEGIN PFP */ /* USER CODE END PFP */ /* Private user code ---------------------------------------------------------*/ /* USER CODE BEGIN 0 */ /* ADC_proc/ADC_proc_shadow/Sweep_state definitions */ volatile struct ADC_proc_typedef ADC_proc, ADC_proc_shadow; volatile struct Sweep_state_typedef Sweep_state; volatile uint32_t curr_step_start_N = 0; /* ADC1 circular DMA buffer definition */ uint16_t ADC1_buff_circular[ADC_BUFF_SIZE]; //char ADC_msg[] = "curr_step ?????? ??????????\r\nSweep_start\n\r"; char ADC_msg[] = "stp ?????? ??????????\r\nSweep_start\n\r"; #define ADC_msg_len 24 #define ADC_msg_len_Sweep_start 37 #define ADC_msg_val_pos 12 #define ADC_msg_step_pos 4 /* USER CODE END 0 */ /** * @brief The application entry point. * @retval int */ int main(void) { /* USER CODE BEGIN 1 */ /* USER CODE END 1 */ /* MCU Configuration--------------------------------------------------------*/ /* Reset of all peripherals, Initializes the Flash interface and the Systick. */ HAL_Init(); /* USER CODE BEGIN Init */ /* USER CODE END Init */ /* Configure the system clock */ SystemClock_Config(); /* USER CODE BEGIN SysInit */ /* USER CODE END SysInit */ /* Initialize all configured peripherals */ MX_GPIO_Init(); MX_DMA_Init(); MX_ADC1_Init(); MX_USB_DEVICE_Init(); /* USER CODE BEGIN 2 */ HAL_GPIO_WritePin(LED_BLUE_GPIO_Port, LED_BLUE_Pin, GPIO_PIN_SET); HAL_ADC_Start_DMA(&hadc1, (uint32_t*)ADC1_buff_circular, ADC_BUFF_SIZE); ADC_proc_shadow.status = 0; // ADC started ADC_proc_shadow.N = 0; ADC_proc_shadow.sum = 0; ADC_proc_shadow.avg = 0; ADC_proc.status = 0; // ADC started ADC_proc.N = 0; ADC_proc.sum = 0; ADC_proc.avg = 0; uint32_t curr_points_N_max = 100; uint32_t curr_points_N =0; /* USER CODE END 2 */ /* Infinite loop */ /* USER CODE BEGIN WHILE */ while (1) { //HAL_GPIO_TogglePin(LED_RED_GPIO_Port, LED_RED_Pin); //HAL_Delay(100); if (ADC_proc_shadow.status == 2) { ADC_proc_shadow.avg = ADC_proc_shadow.sum / ADC_proc_shadow.N; ADC_proc_shadow.status = 1; // reset for next accumulation ADC_proc_shadow.sum = 0; ADC_proc_shadow.N = 0; ADC_msg[ADC_msg_val_pos + 0] = (ADC_proc_shadow.avg / 10000000000) % 10 + '0'; ADC_msg[ADC_msg_val_pos + 1] = (ADC_proc_shadow.avg / 1000000000) % 10 + '0'; ADC_msg[ADC_msg_val_pos + 2] = (ADC_proc_shadow.avg / 10000000) % 10 + '0'; ADC_msg[ADC_msg_val_pos + 3] = (ADC_proc_shadow.avg / 1000000) % 10 + '0'; ADC_msg[ADC_msg_val_pos + 4] = (ADC_proc_shadow.avg / 100000) % 10 + '0'; ADC_msg[ADC_msg_val_pos + 5] = (ADC_proc_shadow.avg / 10000) % 10 + '0'; ADC_msg[ADC_msg_val_pos + 6] = (ADC_proc_shadow.avg / 1000) % 10 + '0'; ADC_msg[ADC_msg_val_pos + 7] = (ADC_proc_shadow.avg / 100) % 10 + '0'; ADC_msg[ADC_msg_val_pos + 8] = (ADC_proc_shadow.avg / 10) % 10 + '0'; ADC_msg[ADC_msg_val_pos + 9] = (ADC_proc_shadow.avg / 1) % 10 + '0'; ADC_msg[ADC_msg_step_pos + 0] = (Sweep_state.curr_step_N / 100000) % 10 + '0'; ADC_msg[ADC_msg_step_pos + 1] = (Sweep_state.curr_step_N / 10000) % 10 + '0'; ADC_msg[ADC_msg_step_pos + 2] = (Sweep_state.curr_step_N / 1000) % 10 + '0'; ADC_msg[ADC_msg_step_pos + 3] = (Sweep_state.curr_step_N / 100) % 10 + '0'; ADC_msg[ADC_msg_step_pos + 4] = (Sweep_state.curr_step_N / 10) % 10 + '0'; ADC_msg[ADC_msg_step_pos + 5] = (Sweep_state.curr_step_N / 1) % 10 + '0'; //HAL_GPIO_TogglePin(LED_RED_GPIO_Port, LED_RED_Pin); if (Sweep_state.curr_step_N > 10000){ Sweep_state.curr_step_N = 0; Sweep_state.sweep_cycle_started_flag = 1; } if (Sweep_state.sweep_cycle_started_flag == 1){ Sweep_state.sweep_cycle_started_flag = 0; // reset sweep cycle flag HAL_GPIO_TogglePin(LED_RED_GPIO_Port, LED_RED_Pin); //CDC_Transmit_FS((uint8_t *)ADC_msg, ADC_msg_len_Sweep_start); while (CDC_Transmit_FS((uint8_t *)ADC_msg, ADC_msg_len_Sweep_start) == USBD_BUSY){ //HAL_Delay(1); } }else{ CDC_Transmit_FS((uint8_t *)ADC_msg, ADC_msg_len); } } //CDC_Transmit_FS((uint8_t *)"Hello from STM32!\r\n", 19); /* USER CODE END WHILE */ /* USER CODE BEGIN 3 */ } /* USER CODE END 3 */ } /** * @brief System Clock Configuration * @retval None */ void SystemClock_Config(void) { RCC_OscInitTypeDef RCC_OscInitStruct = {0}; RCC_ClkInitTypeDef RCC_ClkInitStruct = {0}; /** Configure the main internal regulator output voltage */ __HAL_RCC_PWR_CLK_ENABLE(); __HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1); /** Initializes the RCC Oscillators according to the specified parameters * in the RCC_OscInitTypeDef structure. */ RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE; RCC_OscInitStruct.HSEState = RCC_HSE_ON; RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON; RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE; RCC_OscInitStruct.PLL.PLLM = 8; RCC_OscInitStruct.PLL.PLLN = 336; RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2; RCC_OscInitStruct.PLL.PLLQ = 7; if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) { Error_Handler(); } /** Initializes the CPU, AHB and APB buses clocks */ RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2; RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK; RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1; RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV4; RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV2; if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_5) != HAL_OK) { Error_Handler(); } } /** * @brief ADC1 Initialization Function * @param None * @retval None */ static void MX_ADC1_Init(void) { /* USER CODE BEGIN ADC1_Init 0 */ /* USER CODE END ADC1_Init 0 */ ADC_ChannelConfTypeDef sConfig = {0}; /* USER CODE BEGIN ADC1_Init 1 */ /* USER CODE END ADC1_Init 1 */ /** Configure the global features of the ADC (Clock, Resolution, Data Alignment and number of conversion) */ hadc1.Instance = ADC1; hadc1.Init.ClockPrescaler = ADC_CLOCK_SYNC_PCLK_DIV4; hadc1.Init.Resolution = ADC_RESOLUTION_12B; hadc1.Init.ScanConvMode = DISABLE; hadc1.Init.ContinuousConvMode = DISABLE; hadc1.Init.DiscontinuousConvMode = DISABLE; hadc1.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_RISING; hadc1.Init.ExternalTrigConv = ADC_EXTERNALTRIGCONV_Ext_IT11; hadc1.Init.DataAlign = ADC_DATAALIGN_RIGHT; hadc1.Init.NbrOfConversion = 1; hadc1.Init.DMAContinuousRequests = ENABLE; hadc1.Init.EOCSelection = ADC_EOC_SINGLE_CONV; if (HAL_ADC_Init(&hadc1) != HAL_OK) { Error_Handler(); } /** Configure for the selected ADC regular channel its corresponding rank in the sequencer and its sample time. */ sConfig.Channel = ADC_CHANNEL_3; sConfig.Rank = 1; sConfig.SamplingTime = ADC_SAMPLETIME_3CYCLES; if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN ADC1_Init 2 */ /* USER CODE END ADC1_Init 2 */ } /** * Enable DMA controller clock */ static void MX_DMA_Init(void) { /* DMA controller clock enable */ __HAL_RCC_DMA2_CLK_ENABLE(); /* DMA interrupt init */ /* DMA2_Stream0_IRQn interrupt configuration */ HAL_NVIC_SetPriority(DMA2_Stream0_IRQn, 0, 0); HAL_NVIC_EnableIRQ(DMA2_Stream0_IRQn); } /** * @brief GPIO Initialization Function * @param None * @retval None */ static void MX_GPIO_Init(void) { GPIO_InitTypeDef GPIO_InitStruct = {0}; /* USER CODE BEGIN MX_GPIO_Init_1 */ /* USER CODE END MX_GPIO_Init_1 */ /* GPIO Ports Clock Enable */ __HAL_RCC_GPIOH_CLK_ENABLE(); __HAL_RCC_GPIOC_CLK_ENABLE(); __HAL_RCC_GPIOA_CLK_ENABLE(); __HAL_RCC_GPIOF_CLK_ENABLE(); __HAL_RCC_GPIOB_CLK_ENABLE(); /*Configure GPIO pin Output Level */ HAL_GPIO_WritePin(LED_RED_GPIO_Port, LED_RED_Pin, GPIO_PIN_RESET); /*Configure GPIO pin Output Level */ HAL_GPIO_WritePin(LED_BLUE_GPIO_Port, LED_BLUE_Pin, GPIO_PIN_SET); /*Configure GPIO pin : CURR_STEP_START_TRG_Pin */ GPIO_InitStruct.Pin = CURR_STEP_START_TRG_Pin; GPIO_InitStruct.Mode = GPIO_MODE_IT_RISING_FALLING; GPIO_InitStruct.Pull = GPIO_PULLDOWN; HAL_GPIO_Init(CURR_STEP_START_TRG_GPIO_Port, &GPIO_InitStruct); /*Configure GPIO pin : SWEEP_CYCLE_START_TRG_Pin */ GPIO_InitStruct.Pin = SWEEP_CYCLE_START_TRG_Pin; GPIO_InitStruct.Mode = GPIO_MODE_IT_RISING; GPIO_InitStruct.Pull = GPIO_PULLUP; HAL_GPIO_Init(SWEEP_CYCLE_START_TRG_GPIO_Port, &GPIO_InitStruct); /*Configure GPIO pin : PF11 */ GPIO_InitStruct.Pin = GPIO_PIN_11; GPIO_InitStruct.Mode = GPIO_MODE_IT_RISING; GPIO_InitStruct.Pull = GPIO_NOPULL; HAL_GPIO_Init(GPIOF, &GPIO_InitStruct); /*Configure GPIO pins : LED_RED_Pin LED_BLUE_Pin */ GPIO_InitStruct.Pin = LED_RED_Pin|LED_BLUE_Pin; GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; HAL_GPIO_Init(GPIOB, &GPIO_InitStruct); /* EXTI interrupt init*/ HAL_NVIC_SetPriority(EXTI0_IRQn, 0, 0); HAL_NVIC_EnableIRQ(EXTI0_IRQn); HAL_NVIC_SetPriority(EXTI3_IRQn, 0, 0); HAL_NVIC_EnableIRQ(EXTI3_IRQn); /* USER CODE BEGIN MX_GPIO_Init_2 */ /* USER CODE END MX_GPIO_Init_2 */ } /* USER CODE BEGIN 4 */ /* USER CODE END 4 */ /** * @brief This function is executed in case of error occurrence. * @retval None */ void Error_Handler(void) { /* USER CODE BEGIN Error_Handler_Debug */ /* User can add his own implementation to report the HAL error return state */ __disable_irq(); while (1) { } /* USER CODE END Error_Handler_Debug */ } #ifdef USE_FULL_ASSERT /** * @brief Reports the name of the source file and the source line number * where the assert_param error has occurred. * @param file: pointer to the source file name * @param line: assert_param error line source number * @retval None */ void assert_failed(uint8_t *file, uint32_t line) { /* USER CODE BEGIN 6 */ /* User can add his own implementation to report the file name and line number, ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */ /* USER CODE END 6 */ } #endif /* USE_FULL_ASSERT */