#!/usr/bin/python3 from math import sin, cos, pi, sqrt import plotly.graph_objs as go from plotly.subplots import make_subplots from FFT import FFT_real from FP_trigonometry import * INP_L = 1024 F_nyquist = INP_L//2 def abs_f(re, im): return sqrt(re*re + im*im) def DFT_naive(inp, out): for f in range(len(out)): val_re = 0 val_im = 0 for n in range(len(inp)): phi = 2*pi*f*n/INP_L val_re += inp[n] * sin(phi) /INP_L val_im += inp[n] * cos(phi) /INP_L val_abs = abs_f(val_re, val_im) #print("F, val_abs:",f, val_abs) out[f] = val_abs def DFT_naive_FP(inp_float, out): inp = [val*FP_acc for val in inp_float] for f in range(len(out)): val_re = 0 val_im = 0 for n in range(len(inp)): phi = 2*pi_FP*f*n/INP_L phi_sin = sin_FP(phi) phi_cos = cos_FP(phi) #print(phi, phi_sin, phi_cos) val_re += inp[n] * phi_sin /INP_L val_im += inp[n] * phi_cos /INP_L val_abs = abs_FP(val_re, val_im) #print("F, val_abs:",f, val_abs) out[f] = val_abs def FFT_naive(inp, out): fft_out = FFT_real(inp) for i in range(len(fft_out)): val = fft_out[i]/len(inp) if (i < len(out)): out[i] = val else: pass #out.append(val) def FFT_tester(): inp = [-1 + 0.01*i + sin(2*pi*i/10) + cos(2*pi*i/20) + sin(2*pi*i/250) + sin(2*pi*i/2.001) for i in range(INP_L)] # inp = [sin(2*pi*i/2.001)for i in range(INP_L)] out_DFT = [0 for i in range(F_nyquist + 1)] out_FFT = [0 for val in range(F_nyquist + 1)] DFT_naive(inp, out_DFT) FFT_naive(inp, out_FFT) Fourier_error = [] for a,b in zip(out_FFT, out_DFT): Fourier_error.append(a - b) chart = make_subplots(rows=3, cols=1) chart.add_trace(go.Scatter(x=[i for i in range(len(inp))], y=inp, name="inp", mode="markers+lines"), row=1, col=1) chart.add_trace(go.Scatter(x=[i for i in range(len(out_DFT))], y=out_DFT, name="out_DFT", mode="markers+lines"), row=2, col=1) chart.add_trace(go.Scatter(x=[i for i in range(len(out_FFT))], y=out_FFT, name="out_FFT", mode="markers+lines"), row=2, col=1) chart.add_trace(go.Scatter(x=[i for i in range(len(Fourier_error))], y=Fourier_error, name="error", mode="markers+lines"), row=3, col=1) chart.update_xaxes(matches="x2", row=3, col=1) chart.show() def DFT_tester(): inp = [-1 + 0.01*i + sin(2*pi*i/10) + cos(2*pi*i/20) + sin(2*pi*i/250) + sin(2*pi*i/2.001) for i in range(INP_L)] # inp = [sin(2*pi*i/2.001)for i in range(INP_L)] out_float = [0 for i in range(F_nyquist + 1)] out_FP = [0 for val in out_float] DFT_naive(inp, out_float) DFT_naive_FP(inp, out_FP) FP_error = [] for a,b in zip(out_float, out_FP): FP_error.append(a - b/FP_acc) chart = make_subplots(rows=3, cols=1) chart.add_trace(go.Scatter(x=[i for i in range(len(inp))], y=inp, name="inp", mode="markers+lines"), row=1, col=1) chart.add_trace(go.Scatter(x=[i for i in range(len(out_float))], y=out_float, name="out_float", mode="markers+lines"), row=2, col=1) chart.add_trace(go.Scatter(x=[i for i in range(len(out_FP))], y=[val/FP_acc for val in out_FP], name="out_FP", mode="markers+lines"), row=2, col=1) chart.add_trace(go.Scatter(x=[i for i in range(len(out_FP))], y=FP_error, name="FP_error", mode="markers+lines"), row=3, col=1) chart.update_xaxes(matches="x2", row=3, col=1) chart.show() if __name__ == "__main__": #main() # DFT_tester() FFT_tester() #sin_tester()