#!/usr/bin/python3 from math import sin, cos, pi, sqrt import plotly.graph_objs as go from plotly.subplots import make_subplots from FFT import FFT_real FP_acc = 1e3 INP_L = 1024 F_nyquist = INP_L//2 pi_FP = 1* FP_acc def abs_f(re, im): return sqrt(re*re + im*im) def abs_FP(re, im): return int(sqrt(re*re + im*im)) def sqrt_FP(val): #print(val) return int(sqrt(val)) def DFT_naive(inp, out): for f in range(len(out)): val_re = 0 val_im = 0 for n in range(len(inp)): phi = 2*pi*f*n/INP_L val_re += inp[n] * sin(phi) /INP_L val_im += inp[n] * cos(phi) /INP_L val_abs = abs_f(val_re, val_im) print("F, val_abs:",f, val_abs) out[f] = val_abs def abs_FP(re, im): # return sqrt(re*re + im*im) return int(sqrt(re*re + im*im)/FP_acc) trigon_debug = 0 def sin_FP(phi_fp): if (trigon_debug): print("sin_FP========") print("phi:", phi_fp) if phi_fp < 0: if (trigon_debug): print("phi < 0. recursive inversion...") return -1 *sin_FP(-1*phi_fp) while phi_fp >= 2*pi_FP: if (trigon_debug): print("phi is bigger than 2Pi. Decreasing...") phi_fp -= 2*pi_FP if (trigon_debug): print("phi:", phi_fp) if phi_fp >= pi_FP: if (trigon_debug): print("phi > pi_FP. recursive inversion...") print(phi_fp, pi_FP) return -1*sin_FP(phi_fp - pi_FP) if phi_fp == pi_FP/2: return 1*FP_acc if phi_fp == 0: return 0 if phi_fp > pi_FP/2: if (trigon_debug): print("phi > pi_FP/2. recursive inversion...") return sin_FP(pi_FP - phi_fp) #now phi should be inside [0, Pi/2). checking... if phi_fp < 0: raise ValueError('error in sin_FP. after all checks phi < 0') if phi_fp >= pi_FP/2: raise ValueError('error in sin_FP. after all checks phi > pi_FP/2') #now phi is inside [0, Pi/2). So, cos(phi) > 1 always if (trigon_debug): print("phi:", phi_fp) return sin_FP_constrained(phi_fp) sin_05_debug = 0 def sin_FP_constrained(phi_fp): phi_trh = pi_FP/16 if (trigon_debug): print("sin_FP_constrained===========") print("phi:", phi_fp) print("check is phi inside [0, Pi/2)") if phi_fp < 0: raise ValueError('error in sin_FP. after all checks phi < 0') if phi_fp >= pi_FP/2: raise ValueError('error in sin_FP. after all checks phi > pi_FP/2') if (trigon_debug): print("Ok") if (phi_fp > phi_trh): if (sin_05_debug): print("phi_fp:", phi_fp," >",phi_trh,"... recusion") print("phi_fp/2:", phi_fp/2) sin_phi_05 = sin_FP_constrained(phi_fp/2) sin_phi = (2*sin_phi_05 * sqrt_FP(FP_acc**2 - sin_phi_05*sin_phi_05))/FP_acc if (sin_05_debug): print("sin_phi_05:", sin_phi_05) print("sin_phi:",sin_phi) return sin_phi else: res = int((phi_fp * 3.141592653589793238462643383279502884197169399375105820974944 * FP_acc)/FP_acc - ((phi_fp * 3.141592653589793238462643383279502884197169399375105820974944 * FP_acc)/FP_acc)**3/(6*FP_acc**2)) # res = int((phi_fp * 1.0 * FP_acc)/FP_acc - ((phi_fp * 1.0 * FP_acc)/FP_acc)**3/(6*FP_acc**2)) if (trigon_debug): print("calculating sin(x) as x:",phi_fp, res) return res # return sin(pi*(phi_fp/FP_acc)/(pi_FP/FP_acc)) def cos_FP(phi_fp): return sin_FP(phi_fp - pi_FP/2) def DFT_naive_FP(inp_float, out): inp = [val*FP_acc for val in inp_float] for f in range(len(out)): val_re = 0 val_im = 0 for n in range(len(inp)): phi = 2*pi_FP*f*n/INP_L phi_sin = sin_FP(phi) phi_cos = cos_FP(phi) #print(phi, phi_sin, phi_cos) val_re += inp[n] * phi_sin /INP_L val_im += inp[n] * phi_cos /INP_L val_abs = abs_FP(val_re, val_im) print("F, val_abs:",f, val_abs) out[f] = val_abs def FFT_naive(inp, out): fft_out = FFT_real(inp) for i in range(len(fft_out)): val = fft_out[i]/len(inp) if (i < len(out)): out[i] = val else: pass #out.append(val) def FFT_tester(): inp = [-1 + 0.01*i + sin(2*pi*i/10) + cos(2*pi*i/20) + sin(2*pi*i/250) + sin(2*pi*i/2.001) for i in range(INP_L)] # inp = [sin(2*pi*i/2.001)for i in range(INP_L)] out_DFT = [0 for i in range(F_nyquist + 1)] out_FFT = [0 for val in range(F_nyquist + 1)] DFT_naive(inp, out_DFT) FFT_naive(inp, out_FFT) Fourier_error = [] for a,b in zip(out_FFT, out_DFT): Fourier_error.append(a - b) chart = make_subplots(rows=3, cols=1) chart.add_trace(go.Scatter(x=[i for i in range(len(inp))], y=inp, name="inp", mode="markers+lines"), row=1, col=1) chart.add_trace(go.Scatter(x=[i for i in range(len(out_DFT))], y=out_DFT, name="out_DFT", mode="markers+lines"), row=2, col=1) chart.add_trace(go.Scatter(x=[i for i in range(len(out_FFT))], y=out_FFT, name="out_FFT", mode="markers+lines"), row=2, col=1) chart.add_trace(go.Scatter(x=[i for i in range(len(Fourier_error))], y=Fourier_error, name="error", mode="markers+lines"), row=3, col=1) chart.show() def DFT_tester(): inp = [-1 + 0.01*i + sin(2*pi*i/10) + cos(2*pi*i/20) + sin(2*pi*i/250) + sin(2*pi*i/2.001) for i in range(INP_L)] # inp = [sin(2*pi*i/2.001)for i in range(INP_L)] out_float = [0 for i in range(F_nyquist + 1)] out_FP = [0 for val in out_float] DFT_naive(inp, out_float) DFT_naive_FP(inp, out_FP) FP_error = [] for a,b in zip(out_float, out_FP): FP_error.append(a - b/FP_acc) chart = make_subplots(rows=3, cols=1) chart.add_trace(go.Scatter(x=[i for i in range(len(inp))], y=inp, name="inp", mode="markers+lines"), row=1, col=1) chart.add_trace(go.Scatter(x=[i for i in range(len(out_float))], y=out_float, name="out_float", mode="markers+lines"), row=2, col=1) chart.add_trace(go.Scatter(x=[i for i in range(len(out_FP))], y=[val/FP_acc for val in out_FP], name="out_FP", mode="markers+lines"), row=2, col=1) chart.add_trace(go.Scatter(x=[i for i in range(len(out_FP))], y=FP_error, name="FP_error", mode="markers+lines"), row=3, col=1) chart.show() def sin_tester(): N = 4000 angs = [(i - N/2)/1000 for i in range(N)] res_f = [] res_FP = [] res_cos_FP = [] for phi in angs: res_f.append(sin(phi*pi)) # print(phi, phi*FP_acc*pi_FP/FP_acc) val_fp = sin_FP(phi*FP_acc*pi_FP/FP_acc) val_cos_fp = cos_FP(phi*FP_acc*pi_FP/FP_acc) print("angle, sin, cos:",phi, val_fp, val_cos_fp) res_FP.append(val_fp) res_cos_FP.append(val_cos_fp) chart = go.Figure() chart.add_trace(go.Scatter(x = angs, y=res_f, name="sin_float", mode="markers+lines")) chart.add_trace(go.Scatter(x = angs, y=[val/FP_acc for val in res_FP], name="sin_FP", mode="markers+lines")) chart.add_trace(go.Scatter(x = angs, y=[val/FP_acc for val in res_cos_FP], name="cos_FP", mode="markers+lines")) chart.show() if __name__ == "__main__": #main() # DFT_tester() FFT_tester() #sin_tester()