implemented in-place FFT c-style. (by ChatGPT)

This commit is contained in:
2025-10-08 18:01:08 +03:00
parent db305dbfda
commit 59f99cc466
3 changed files with 168 additions and 7 deletions

169
FFT.py
View File

@ -1,5 +1,5 @@
import numpy as np
from math import sin, cos, pi, sqrt
@ -12,17 +12,38 @@ def FFT_backup(inp):
def FFT_real(inp):
mode = 2
if (mode == 0):
inp = np.array(inp)
out = FFT(inp)
out = [val for val in np.abs(out)]
out = FFT_np(inp)
out = [np.abs(val) for val in out]
if (mode == 1):
out = FFT_arr([[val, 0] for val in inp])
#out = [val for val in np.abs(out)]
print("FFT_calculated!")
print("output:", out)
out = [sqrt(val[0]**2 + val[1]**2) for val in out]
# out = [2 for val in out]
if (mode == 2):
out = FFT_arr_inplace([[val, 0] for val in inp])
#out = [val for val in np.abs(out)]
print("FFT_calculated!")
print("output:", out)
out = [sqrt(val[0]**2 + val[1]**2) for val in out]
print(out)
return out
def FFT(inp):
return FFT_np(inp)
return FFT_arr([[val, 0] for val in inp])
def FFT_np(inp):
print("inp:", inp)
inp = np.array(inp)
N = inp.shape[0]
if N == 1:
@ -33,3 +54,143 @@ def FFT_np(inp):
tw = np.exp(-2j * np.pi * k / N) * X_odd
return np.concatenate((X_even + tw, X_even - tw))
def FFT_arr(x):
print("x:", x)
N = len(x)
print("len(x):", N)
if N == 1:
print("As len(x) == 1, return it`s value")
return x
X_even = FFT_arr(x[::2])
X_odd = FFT_arr(x[1::2])
print("X_even:",X_even)
tw = []
for k in range(len(X_odd)):
a = cos(2*pi * k/N) #real
b = -sin(2*pi * k/N) #imag
c = X_odd[k][0] # real
d = X_odd[k][1] # imag
print("a,b,c,d:", a,b,c,d)
tw.append([a*c - b*d, b*c + a*d]) #(a + ib)(c + id) = (ac - bd) + i(bc + ad)
res = [0 for i in range(len(X_even)*2)]
for i in range(len(X_even)):
res[i] = [X_even[i][0] + tw[i][0], X_even[i][1] + tw[i][1]]
res[i+len(X_even)] = [X_even[i][0] - tw[i][0], X_even[i][1] - tw[i][1]]
return res
import math
def FFT_arr_inplace(buf):
"""
In-place radix-2 DIT FFT для списка buf длины N=2^m, где каждый элемент — [re, im].
Без массивов twiddle: твиддл на уровне обновляется рекуррентно.
"""
N = len(buf)
# --- bit-reverse перестановка (чтобы бабочки шли последовательно) ---
j = 0
for i in range(1, N):
bit = N >> 1
while j & bit:
j ^= bit
bit >>= 1
j |= bit
if i < j:
buf[i], buf[j] = buf[j], buf[i]
# --- уровни бабочек ---
m = 2
while m <= N:
half = m // 2
# шаг угла Δ = 2π/m, базовый твиддл w_m = e^{-jΔ} => (cw, sw)
= math.cos(2.0 * math.pi / m)
= -math.sin(2.0 * math.pi / m)
for start in range(0, N, m):
# w = e^{-j*0*Δ} = 1 + j0
wr, wi = 1.0, 0.0
for k in range(half):
u_re, u_im = buf[start + k]
v_re, v_im = buf[start + k + half]
# t = w * v
t_re = wr * v_re - wi * v_im
t_im = wr * v_im + wi * v_re
# верх/низ
buf[start + k][0] = u_re + t_re
buf[start + k][1] = u_im + t_im
buf[start + k + half][0] = u_re - t_re
buf[start + k + half][1] = u_im - t_im
# w *= w_m (поворот на Δ с помощью рекуррентной формулы)
# (wr + j wi) * (cΔ + j sΔ)
wr, wi = wr * - wi * , wr * + wi *
m <<= 1
return buf
def FFT_arr_for_C(x):
print("x:", x)
N = len(x)
print("len(x):", N)
if N == 1:
print("As len(x) == 1, return it`s value")
return x
X_even = FFT_arr_for_C(x[::2])
X_odd = FFT_arr_for_C(x[1::2])
print("X_even:",X_even)
tw = []
for k in range(len(X_odd)):
a = cos(2*pi * k/N) #real
b = -sin(2*pi * k/N) #imag
c = X_odd[k][0] # real
d = X_odd[k][1] # imag
print("a,b,c,d:", a,b,c,d)
tw.append([a*c - b*d, b*c + a*d]) #(a + ib)(c + id) = (ac - bd) + i(bc + ad)
res = [0 for i in range(len(X_even)*2)]
for i in range(len(X_even)):
res[i] = [X_even[i][0] + tw[i][0], X_even[i][1] + tw[i][1]]
res[i+len(X_even)] = [X_even[i][0] - tw[i][0], X_even[i][1] - tw[i][1]]
return res

Binary file not shown.

View File

@ -37,7 +37,7 @@ def DFT_naive(inp, out):
val_im += inp[n] * cos(phi) /INP_L
val_abs = abs_f(val_re, val_im)
print("F, val_abs:",f, val_abs)
#print("F, val_abs:",f, val_abs)
out[f] = val_abs
@ -148,7 +148,7 @@ def DFT_naive_FP(inp_float, out):
val_im += inp[n] * phi_cos /INP_L
val_abs = abs_FP(val_re, val_im)
print("F, val_abs:",f, val_abs)
#print("F, val_abs:",f, val_abs)
out[f] = val_abs